1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
use std::{
cmp::Ordering,
collections::{BTreeMap, BTreeSet},
};
use sway_error::{
error::CompileError,
handler::{ErrorEmitted, Handler},
};
use sway_types::{Ident, Span, Spanned};
use crate::{
decl_engine::{DeclEngineGet, DeclEngineInsert},
engine_threading::*,
language::{
ty::{self, TyImplItem},
CallPath,
},
type_system::{SubstTypes, TypeId},
ReplaceSelfType, TraitConstraint, TypeArgument, TypeInfo, TypeSubstMap, UnifyCheck,
};
use super::TryInsertingTraitImplOnFailure;
#[derive(Clone, Debug)]
struct TraitSuffix {
name: Ident,
args: Vec<TypeArgument>,
}
impl PartialEqWithEngines for TraitSuffix {
fn eq(&self, other: &Self, engines: &Engines) -> bool {
self.name == other.name && self.args.eq(&other.args, engines)
}
}
impl OrdWithEngines for TraitSuffix {
fn cmp(&self, other: &Self, engines: &Engines) -> std::cmp::Ordering {
self.name
.cmp(&other.name)
.then_with(|| self.args.cmp(&other.args, engines))
}
}
impl<T: PartialEqWithEngines> PartialEqWithEngines for CallPath<T> {
fn eq(&self, other: &Self, engines: &Engines) -> bool {
self.prefixes == other.prefixes
&& self.suffix.eq(&other.suffix, engines)
&& self.is_absolute == other.is_absolute
}
}
impl<T: OrdWithEngines> OrdWithEngines for CallPath<T> {
fn cmp(&self, other: &Self, engines: &Engines) -> Ordering {
self.prefixes
.cmp(&other.prefixes)
.then_with(|| self.suffix.cmp(&other.suffix, engines))
.then_with(|| self.is_absolute.cmp(&other.is_absolute))
}
}
type TraitName = CallPath<TraitSuffix>;
#[derive(Clone, Debug)]
struct TraitKey {
name: TraitName,
type_id: TypeId,
trait_decl_span: Option<Span>,
}
impl OrdWithEngines for TraitKey {
fn cmp(&self, other: &Self, engines: &Engines) -> std::cmp::Ordering {
self.name
.cmp(&other.name, engines)
.then_with(|| self.type_id.cmp(&other.type_id))
}
}
/// Map of name to [TyImplItem](ty::TyImplItem)
type TraitItems = im::HashMap<String, TyImplItem>;
#[derive(Clone, Debug)]
struct TraitValue {
trait_items: TraitItems,
/// The span of the entire impl block.
impl_span: Span,
}
#[derive(Clone, Debug)]
struct TraitEntry {
key: TraitKey,
value: TraitValue,
}
/// Map of trait name and type to [TraitItems].
type TraitImpls = Vec<TraitEntry>;
/// Map holding trait implementations for types.
///
/// Note: "impl self" blocks are considered traits and are stored in the
/// [TraitMap].
#[derive(Clone, Debug, Default)]
pub(crate) struct TraitMap {
trait_impls: TraitImpls,
}
pub(crate) enum IsImplSelf {
Yes,
No,
}
pub(crate) enum IsExtendingExistingImpl {
Yes,
No,
}
impl TraitMap {
/// Given a [TraitName] `trait_name`, [TypeId] `type_id`, and list of
/// [TyImplItem](ty::TyImplItem) `items`, inserts
/// `items` into the [TraitMap] with the key `(trait_name, type_id)`.
///
/// This method is as conscious as possible of existing entries in the
/// [TraitMap], and tries to append `items` to an existing list of
/// declarations for the key `(trait_name, type_id)` whenever possible.
#[allow(clippy::too_many_arguments)]
pub(crate) fn insert(
&mut self,
handler: &Handler,
trait_name: CallPath,
trait_type_args: Vec<TypeArgument>,
type_id: TypeId,
items: &[TyImplItem],
impl_span: &Span,
trait_decl_span: Option<Span>,
is_impl_self: IsImplSelf,
is_extending_existing_impl: IsExtendingExistingImpl,
engines: &Engines,
) -> Result<(), ErrorEmitted> {
let type_engine = engines.te();
let _decl_engine = engines.de();
handler.scope(|handler| {
let mut trait_items: TraitItems = im::HashMap::new();
for item in items.iter() {
match item {
TyImplItem::Fn(decl_ref) => {
if trait_items
.insert(decl_ref.name().clone().to_string(), item.clone())
.is_some()
{
// duplicate method name
handler.emit_err(CompileError::MultipleDefinitionsOfName {
name: decl_ref.name().clone(),
span: decl_ref.span(),
});
}
}
TyImplItem::Constant(decl_ref) => {
trait_items.insert(decl_ref.name().to_string(), item.clone());
}
TyImplItem::Type(decl_ref) => {
trait_items.insert(decl_ref.name().to_string(), item.clone());
}
}
}
// check to see if adding this trait will produce a conflicting definition
let trait_type_id = type_engine.insert(
engines,
TypeInfo::Custom {
call_path: trait_name.suffix.clone().into(),
type_arguments: if trait_type_args.is_empty() {
None
} else {
Some(trait_type_args.clone())
},
root_type_id: None,
},
);
for TraitEntry {
key:
TraitKey {
name: map_trait_name,
type_id: map_type_id,
trait_decl_span: _,
},
value:
TraitValue {
trait_items: map_trait_items,
..
},
} in self.trait_impls.iter()
{
let CallPath {
suffix:
TraitSuffix {
name: map_trait_name_suffix,
args: map_trait_type_args,
},
..
} = map_trait_name;
let map_trait_type_id = type_engine.insert(
engines,
TypeInfo::Custom {
call_path: map_trait_name_suffix.clone().into(),
type_arguments: if map_trait_type_args.is_empty() {
None
} else {
Some(map_trait_type_args.to_vec())
},
root_type_id: None,
},
);
let unify_checker = UnifyCheck::constraint_subset(engines);
let types_are_subset = unify_checker.check(type_id, *map_type_id);
let traits_are_subset = unify_checker.check(trait_type_id, map_trait_type_id);
if matches!(is_extending_existing_impl, IsExtendingExistingImpl::No)
&& types_are_subset
&& traits_are_subset
&& matches!(is_impl_self, IsImplSelf::No)
{
let trait_name_str = format!(
"{}{}",
trait_name.suffix,
if trait_type_args.is_empty() {
String::new()
} else {
format!(
"<{}>",
trait_type_args
.iter()
.map(|type_arg| engines.help_out(type_arg).to_string())
.collect::<Vec<_>>()
.join(", ")
)
}
);
handler.emit_err(CompileError::ConflictingImplsForTraitAndType {
trait_name: trait_name_str,
type_implementing_for: engines.help_out(type_id).to_string(),
second_impl_span: impl_span.clone(),
});
} else if types_are_subset
&& (traits_are_subset || matches!(is_impl_self, IsImplSelf::Yes))
{
for (name, item) in trait_items.iter() {
match item {
ty::TyTraitItem::Fn(decl_ref) => {
if map_trait_items.get(name).is_some() {
handler.emit_err(CompileError::DuplicateDeclDefinedForType {
decl_kind: "method".into(),
decl_name: decl_ref.name().to_string(),
type_implementing_for: engines
.help_out(type_id)
.to_string(),
span: decl_ref.name().span(),
});
}
}
ty::TyTraitItem::Constant(decl_ref) => {
if map_trait_items.get(name).is_some() {
handler.emit_err(CompileError::DuplicateDeclDefinedForType {
decl_kind: "constant".into(),
decl_name: decl_ref.name().to_string(),
type_implementing_for: engines
.help_out(type_id)
.to_string(),
span: decl_ref.name().span(),
});
}
}
ty::TyTraitItem::Type(decl_ref) => {
if map_trait_items.get(name).is_some() {
handler.emit_err(CompileError::DuplicateDeclDefinedForType {
decl_kind: "type".into(),
decl_name: decl_ref.name().to_string(),
type_implementing_for: engines
.help_out(type_id)
.to_string(),
span: decl_ref.name().span(),
});
}
}
}
}
}
}
let trait_name: TraitName = CallPath {
prefixes: trait_name.prefixes,
suffix: TraitSuffix {
name: trait_name.suffix,
args: trait_type_args,
},
is_absolute: trait_name.is_absolute,
};
// even if there is a conflicting definition, add the trait anyway
self.insert_inner(
trait_name,
impl_span.clone(),
trait_decl_span,
type_id,
trait_items,
engines,
);
Ok(())
})
}
fn insert_inner(
&mut self,
trait_name: TraitName,
impl_span: Span,
trait_decl_span: Option<Span>,
type_id: TypeId,
trait_methods: TraitItems,
engines: &Engines,
) {
let key = TraitKey {
name: trait_name,
type_id,
trait_decl_span,
};
let value = TraitValue {
trait_items: trait_methods,
impl_span,
};
let entry = TraitEntry { key, value };
let trait_impls: TraitImpls = vec![entry];
let trait_map = TraitMap { trait_impls };
self.extend(trait_map, engines);
}
/// Given a [TypeId] `type_id`, retrieves entries in the [TraitMap] `self`
/// for which `type_id` is a subset and re-inserts them under `type_id`.
///
/// Here is an example of what this means. Imagine we have this Sway code:
///
/// ```ignore
/// struct Data<T, F> {
/// first: T,
/// second: F,
/// }
///
/// impl<T, F> Data<T, F> {
/// fn get_first(self) -> T {
/// self.first
/// }
///
/// fn get_second(self) -> F {
/// self.second
/// }
/// }
///
/// impl<T> Data<T, T> {
/// fn switch(ref mut self) {
/// let first = self.first;
/// self.first = self.second;
/// self.second = first;
/// }
/// }
///
/// impl Data<u8, u8> {
/// fn add_u8(ref mut self, input: u8) {
/// self.first += input;
/// self.second += input;
/// }
/// }
///
/// impl Data<bool, bool> {
/// fn inner_and(self) -> bool {
/// self.first && self.second
/// }
/// }
///
/// fn main() {
/// let mut foo = Data {
/// first: 1u8,
/// second: 2u8,
/// };
///
/// let a = foo.get_first();
/// let b = foo.get_second();
/// foo.switch();
/// let c = foo.add_u8(3u8);
/// let d = foo.inner_and(); // fails to compile
///
/// let mut bar = Data {
/// first: true,
/// second: false,
/// };
///
/// let e = bar.get_first();
/// let f = bar.get_second();
/// bar.switch();
/// let g = bar.add_u8(3u8); // fails to compile
/// let h = bar.inner_and();
///
/// let mut baz = Data {
/// first: 1u8,
/// second: false,
/// };
///
/// let i = baz.get_first();
/// let j = baz.get_second();
/// baz.switch(); // fails to compile
/// let k = baz.add_u8(3u8); // fails to compile
/// let l = baz.inner_and(); // fails to compile
/// }
/// ```
///
/// When we first create the type of `Data<u8, u8>` when we declare the
/// variable `foo`, we need some way of gathering all of the applicable
/// traits that have been implemented for `Data<u8, u8>`, even if they were
/// not implemented for `Data<u8, u8>` directly. That's why we look for
/// entries in the [TraitMap] `self` for which `type_id` is a subset and
/// re-insert them under `type_id`. Moreover, the impl block for
/// `Data<T, T>` needs to be able to call methods that are defined in the
/// impl block of `Data<T, F>`
pub(crate) fn insert_for_type(&mut self, engines: &Engines, type_id: TypeId) {
self.extend(self.filter_by_type(type_id, engines), engines);
}
/// Given [TraitMap]s `self` and `other`, extend `self` with `other`,
/// extending existing entries when possible.
pub(crate) fn extend(&mut self, other: TraitMap, engines: &Engines) {
for oe in other.trait_impls.into_iter() {
let pos = self
.trait_impls
.binary_search_by(|se| se.key.cmp(&oe.key, engines));
match pos {
Ok(pos) => self.trait_impls[pos]
.value
.trait_items
.extend(oe.value.trait_items),
Err(pos) => self.trait_impls.insert(pos, oe),
}
}
}
/// Filters the entries in `self` and return a new [TraitMap] with all of
/// the entries from `self` that implement a trait from the declaration with that span.
pub(crate) fn filter_by_trait_decl_span(&self, trait_decl_span: Span) -> TraitMap {
let mut trait_map = TraitMap::default();
for entry in self.trait_impls.iter() {
if entry
.key
.trait_decl_span
.as_ref()
.map_or(false, |span| span == &trait_decl_span)
{
trait_map.trait_impls.push(entry.clone());
}
}
trait_map
}
/// Filters the entries in `self` with the given [TypeId] `type_id` and
/// return a new [TraitMap] with all of the entries from `self` for which
/// `type_id` is a subtype. Additionally, the new [TraitMap] contains the
/// entries for the inner types of `self`.
///
/// An "inner type" of `self` is one that is contained within `self`, but
/// not including `self`. So the types of the fields of a struct would be
/// inner types, for instance.
///
/// The new [TraitMap] must contain entries for the inner types of `self`
/// because users will want to chain field access's and method calls.
/// Here is some example Sway code to demonstrate this:
///
/// `data.sw`:
/// ```ignore
/// library;
///
/// enum MyResult<T, E> {
/// Ok: T,
/// Err: E,
/// }
///
/// impl<T, E> MyResult<T, E> {
/// fn is_ok(self) -> bool {
/// match self {
/// MyResult::Ok(_) => true,
/// _ => false,
/// }
/// }
/// }
///
/// pub struct Data<T> {
/// value: MyResult<T, str[10]>,
/// }
///
/// impl<T> Data<T> {
/// fn new(value: T) -> Data<T> {
/// Data {
/// value: MyResult::Ok(value)
/// }
/// }
/// }
/// ```
///
/// `main.sw`:
/// ```ignore
/// script;
///
/// mod data;
///
/// use data::Data;
///
/// fn main() {
/// let foo = Data::new(true);
/// let bar = foo.value.is_ok();
/// }
/// ```
///
/// In this example, we need to be able to find the definition of the
/// `is_ok` method for the correct type, but we need to do that without
/// requiring the user to import the whole `MyResult<T, E>` enum. Because if
/// this was required, this would make users make large portions of their
/// libraries public with `pub`. Moreover, we wouldn't need to import the
/// whole `MyResult<T, E>` enum anyway, because the only type that we are
/// seeing in `main.sw` is `MyResult<bool, str[10]>`!
///
/// When an entry is found from `self` with type `type_id'` for which
/// `type_id` is a subtype, we take the methods defined upon `type_id'` and
/// translate them to be defined upon `type_id`.
///
/// Here is an example of what this looks like. Take this Sway code:
///
/// ```ignore
/// impl<T, F> Data<T, F> {
/// fn get_first(self) -> T {
/// self.first
/// }
///
/// fn get_second(self) -> F {
/// self.second
/// }
/// }
///
/// impl<T> Data<T, T> {
/// fn switch(ref mut self) {
/// let first = self.first;
/// self.first = self.second;
/// self.second = first;
/// }
/// }
/// ```
///
/// If we were to list all of the methods by hand defined for `Data<T, T>`,
/// these would be `get_first()`, `get_second()`, and `switch()`. But if we
/// were to list all of the methods by hand for `Data<T, F>`, these would
/// just include `get_first()` and `get_second()`. So, for any given
/// [TraitMap], in order to find all of the methods defined for a `type_id`,
/// we must iterate through the [TraitMap] and extract all methods that are
/// defined upon any type for which `type_id` is a subset.
///
/// Once those methods are identified, we need to translate them to be
/// defined upon `type_id`. Imagine that `type_id` is `Data<T, T>`, when
/// we iterate on `self` we find `Data<T, F>: get_first(self) -> T`,
/// `Data<T, F>: get_second(self) -> F`. Once we translate these methods, we
/// have `Data<T, T>: get_first(self) -> T` and
/// `Data<T, T>: get_second(self) -> T`, and we can create a new [TraitMap]
/// with those entries for `Data<T, T>`.
pub(crate) fn filter_by_type(&self, type_id: TypeId, engines: &Engines) -> TraitMap {
let type_engine = engines.te();
let unify_checker = UnifyCheck::constraint_subset(engines);
// a curried version of the decider protocol to use in the helper functions
let decider = |left: TypeId, right: TypeId| unify_checker.check(left, right);
let mut all_types = type_engine.get(type_id).extract_inner_types(engines);
all_types.insert(type_id);
let all_types = all_types.into_iter().collect::<Vec<_>>();
self.filter_by_type_inner(engines, all_types, decider)
}
/// Filters the entries in `self` with the given [TypeId] `type_id` and
/// return a new [TraitMap] with all of the entries from `self` for which
/// `type_id` is a subtype or a supertype. Additionally, the new [TraitMap]
/// contains the entries for the inner types of `self`.
///
/// This is used for handling the case in which we need to import an impl
/// block from another module, and the type that that impl block is defined
/// for is of the type that we are importing, but in a more concrete form.
///
/// Here is some example Sway code that we should expect to compile:
///
/// `my_double.sw`:
/// ```ignore
/// library;
///
/// pub trait MyDouble<T> {
/// fn my_double(self, input: T) -> T;
/// }
/// ```
///
/// `my_point.sw`:
/// ```ignore
/// library;
///
/// use ::my_double::MyDouble;
///
/// pub struct MyPoint<T> {
/// x: T,
/// y: T,
/// }
///
/// impl MyDouble<u64> for MyPoint<u64> {
/// fn my_double(self, value: u64) -> u64 {
/// (self.x*2) + (self.y*2) + (value*2)
/// }
/// }
/// ```
///
/// `main.sw`:
/// ```ignore
/// script;
///
/// mod my_double;
/// mod my_point;
///
/// use my_point::MyPoint;
///
/// fn main() -> u64 {
/// let foo = MyPoint {
/// x: 10u64,
/// y: 10u64,
/// };
/// foo.my_double(100)
/// }
/// ```
///
/// We need to be able to import the trait defined upon `MyPoint<u64>` just
/// from seeing `use ::my_double::MyDouble;`.
pub(crate) fn filter_by_type_item_import(
&self,
type_id: TypeId,
engines: &Engines,
) -> TraitMap {
let type_engine = engines.te();
let unify_checker = UnifyCheck::constraint_subset(engines);
let unify_checker_for_item_import = UnifyCheck::non_generic_constraint_subset(engines);
// a curried version of the decider protocol to use in the helper functions
let decider = |left: TypeId, right: TypeId| {
unify_checker.check(left, right) || unify_checker_for_item_import.check(right, left)
};
let mut trait_map = self.filter_by_type_inner(engines, vec![type_id], decider);
let all_types = type_engine
.get(type_id)
.extract_inner_types(engines)
.into_iter()
.collect::<Vec<_>>();
// a curried version of the decider protocol to use in the helper functions
let decider2 = |left: TypeId, right: TypeId| unify_checker.check(left, right);
trait_map.extend(
self.filter_by_type_inner(engines, all_types, decider2),
engines,
);
trait_map
}
fn filter_by_type_inner(
&self,
engines: &Engines,
mut all_types: Vec<TypeId>,
decider: impl Fn(TypeId, TypeId) -> bool,
) -> TraitMap {
let type_engine = engines.te();
let decl_engine = engines.de();
let mut trait_map = TraitMap::default();
for TraitEntry {
key:
TraitKey {
name: map_trait_name,
type_id: map_type_id,
trait_decl_span: map_trait_decl_span,
},
value:
TraitValue {
trait_items: map_trait_items,
impl_span,
},
} in self.trait_impls.iter()
{
for type_id in all_types.iter_mut() {
let type_info = type_engine.get(*type_id);
if !type_info.can_change(decl_engine) && *type_id == *map_type_id {
trait_map.insert_inner(
map_trait_name.clone(),
impl_span.clone(),
map_trait_decl_span.clone(),
*type_id,
map_trait_items.clone(),
engines,
);
} else if decider(*type_id, *map_type_id) {
let type_mapping = TypeSubstMap::from_superset_and_subset(
type_engine,
decl_engine,
*map_type_id,
*type_id,
);
let new_self_type = type_engine.insert(engines, TypeInfo::SelfType);
type_id.replace_self_type(engines, new_self_type);
let trait_items: TraitItems = map_trait_items
.clone()
.into_iter()
.map(|(name, item)| match &item {
ty::TyTraitItem::Fn(decl_ref) => {
let mut decl = decl_engine.get(decl_ref.id());
decl.subst(&type_mapping, engines);
decl.replace_self_type(engines, new_self_type);
let new_ref = decl_engine
.insert(decl)
.with_parent(decl_engine, decl_ref.id().into());
(name, TyImplItem::Fn(new_ref))
}
ty::TyTraitItem::Constant(decl_ref) => {
let mut decl = decl_engine.get(decl_ref.id());
decl.subst(&type_mapping, engines);
decl.replace_self_type(engines, new_self_type);
let new_ref = decl_engine.insert(decl);
(name, TyImplItem::Constant(new_ref))
}
ty::TyTraitItem::Type(decl_ref) => {
let mut decl = decl_engine.get(decl_ref.id());
decl.subst(&type_mapping, engines);
decl.replace_self_type(engines, new_self_type);
let new_ref = decl_engine.insert(decl);
(name, TyImplItem::Type(new_ref))
}
})
.collect();
trait_map.insert_inner(
map_trait_name.clone(),
impl_span.clone(),
map_trait_decl_span.clone(),
*type_id,
trait_items,
engines,
);
}
}
}
trait_map
}
/// Find the entries in `self` that are equivalent to `type_id`.
///
/// Notes:
/// - equivalency is defined (1) based on whether the types contains types
/// that are dynamic and can change and (2) whether the types hold
/// equivalency after (1) is fulfilled
/// - this method does not translate types from the found entries to the
/// `type_id` (like in `filter_by_type()`). This is because the only
/// entries that qualify as hits are equivalents of `type_id`
pub(crate) fn get_items_for_type(
&self,
engines: &Engines,
type_id: TypeId,
) -> Vec<ty::TyTraitItem> {
let type_engine = engines.te();
let unify_check = UnifyCheck::non_dynamic_equality(engines);
let mut items = vec![];
// small performance gain in bad case
if matches!(type_engine.get(type_id), TypeInfo::ErrorRecovery(_)) {
return items;
}
for entry in self.trait_impls.iter() {
if unify_check.check(type_id, entry.key.type_id) {
let mut trait_items = entry
.value
.trait_items
.values()
.cloned()
.collect::<Vec<_>>();
items.append(&mut trait_items);
}
}
items
}
/// Find the spans of all impls for the given type.
///
/// Notes:
/// - equivalency is defined (1) based on whether the types contains types
/// that are dynamic and can change and (2) whether the types hold
/// equivalency after (1) is fulfilled
/// - this method does not translate types from the found entries to the
/// `type_id` (like in `filter_by_type()`). This is because the only
/// entries that qualify as hits are equivalents of `type_id`
pub(crate) fn get_impl_spans_for_type(&self, engines: &Engines, type_id: &TypeId) -> Vec<Span> {
let type_engine = engines.te();
let unify_check = UnifyCheck::non_dynamic_equality(engines);
let mut spans = vec![];
// small performance gain in bad case
if matches!(type_engine.get(*type_id), TypeInfo::ErrorRecovery(_)) {
return spans;
}
for entry in self.trait_impls.iter() {
if unify_check.check(*type_id, entry.key.type_id) {
spans.push(entry.value.impl_span.clone());
}
}
spans
}
/// Find the entries in `self` with trait name `trait_name` and return the
/// spans of the impls.
pub(crate) fn get_impl_spans_for_trait_name(&self, trait_name: &CallPath) -> Vec<Span> {
self.trait_impls
.iter()
.filter_map(|entry| {
let map_trait_name = CallPath {
prefixes: entry.key.name.prefixes.clone(),
suffix: entry.key.name.suffix.name.clone(),
is_absolute: entry.key.name.is_absolute,
};
if &map_trait_name == trait_name {
return Some(entry.value.impl_span.clone());
}
None
})
.collect()
}
/// Find the entries in `self` that are equivalent to `type_id` with trait
/// name `trait_name`.
///
/// Notes:
/// - equivalency is defined (1) based on whether the types contains types
/// that are dynamic and can change and (2) whether the types hold
/// equivalency after (1) is fulfilled
/// - this method does not translate types from the found entries to the
/// `type_id` (like in `filter_by_type()`). This is because the only
/// entries that qualify as hits are equivalents of `type_id`
pub(crate) fn get_items_for_type_and_trait_name(
&self,
engines: &Engines,
type_id: TypeId,
trait_name: &CallPath,
) -> Vec<ty::TyTraitItem> {
let type_engine = engines.te();
let unify_check = UnifyCheck::non_dynamic_equality(engines);
let mut items = vec![];
// small performance gain in bad case
if matches!(type_engine.get(type_id), TypeInfo::ErrorRecovery(_)) {
return items;
}
for e in self.trait_impls.iter() {
let map_trait_name = CallPath {
prefixes: e.key.name.prefixes.clone(),
suffix: e.key.name.suffix.name.clone(),
is_absolute: e.key.name.is_absolute,
};
if &map_trait_name == trait_name && unify_check.check(type_id, e.key.type_id) {
let mut trait_items = e.value.trait_items.values().cloned().collect::<Vec<_>>();
items.append(&mut trait_items);
}
}
items
}
pub(crate) fn get_trait_names_for_type(
&self,
engines: &Engines,
type_id: TypeId,
) -> Vec<CallPath> {
let type_engine = engines.te();
let unify_check = UnifyCheck::non_dynamic_equality(engines);
let mut trait_names = vec![];
// small performance gain in bad case
if matches!(type_engine.get(type_id), TypeInfo::ErrorRecovery(_)) {
return trait_names;
}
for entry in self.trait_impls.iter() {
if unify_check.check(type_id, entry.key.type_id) {
let trait_call_path = CallPath {
prefixes: entry.key.name.prefixes.clone(),
suffix: entry.key.name.suffix.name.clone(),
is_absolute: entry.key.name.is_absolute,
};
trait_names.push(trait_call_path);
}
}
trait_names
}
/// Checks to see if the trait constraints are satisfied for a given type.
pub(crate) fn check_if_trait_constraints_are_satisfied_for_type(
&mut self,
handler: &Handler,
type_id: TypeId,
constraints: &[TraitConstraint],
access_span: &Span,
engines: &Engines,
try_inserting_trait_impl_on_failure: TryInsertingTraitImplOnFailure,
) -> Result<(), ErrorEmitted> {
let type_engine = engines.te();
let _decl_engine = engines.de();
let unify_check = UnifyCheck::non_dynamic_equality(engines);
// resolving trait constraits require a concrete type, we need to default numeric to u64
type_engine.decay_numeric(handler, engines, type_id, access_span)?;
let all_impld_traits: BTreeMap<Ident, TypeId> = self
.trait_impls
.iter()
.filter_map(|e| {
let key = &e.key;
let suffix = &key.name.suffix;
let map_trait_type_id = type_engine.insert(
engines,
TypeInfo::Custom {
call_path: suffix.name.clone().into(),
type_arguments: if suffix.args.is_empty() {
None
} else {
Some(suffix.args.to_vec())
},
root_type_id: None,
},
);
if unify_check.check(type_id, key.type_id) {
Some((suffix.name.clone(), map_trait_type_id))
} else {
None
}
})
.collect();
let required_traits: BTreeMap<Ident, TypeId> = constraints
.iter()
.map(|c| {
let TraitConstraint {
trait_name: constraint_trait_name,
type_arguments: constraint_type_arguments,
} = c;
let constraint_type_id = type_engine.insert(
engines,
TypeInfo::Custom {
call_path: constraint_trait_name.suffix.clone().into(),
type_arguments: if constraint_type_arguments.is_empty() {
None
} else {
Some(constraint_type_arguments.clone())
},
root_type_id: None,
},
);
(c.trait_name.suffix.clone(), constraint_type_id)
})
.collect();
let relevant_impld_traits: BTreeMap<Ident, TypeId> = all_impld_traits
.into_iter()
.filter(|(impld_trait_name, impld_trait_type_id)| {
match required_traits.get(impld_trait_name) {
Some(constraint_type_id) => {
unify_check.check(*constraint_type_id, *impld_trait_type_id)
}
_ => false,
}
})
.collect();
let required_traits_names: BTreeSet<Ident> = required_traits.keys().cloned().collect();
let relevant_impld_traits_names: BTreeSet<Ident> =
relevant_impld_traits.keys().cloned().collect();
handler.scope(|handler| {
for trait_name in required_traits_names.difference(&relevant_impld_traits_names) {
if matches!(
try_inserting_trait_impl_on_failure,
TryInsertingTraitImplOnFailure::Yes
) {
self.insert_for_type(engines, type_id);
return self.check_if_trait_constraints_are_satisfied_for_type(
handler,
type_id,
constraints,
access_span,
engines,
TryInsertingTraitImplOnFailure::No,
);
} else {
// TODO: use a better span
handler.emit_err(CompileError::TraitConstraintNotSatisfied {
ty: engines.help_out(type_id).to_string(),
trait_name: trait_name.to_string(),
span: access_span.clone(),
});
}
}
Ok(())
})
}
}