1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
use std::{
    collections::{HashMap, HashSet},
    fmt::Display,
    fs,
};

use graph_cycles::Cycles;
use sway_error::{
    error::CompileError,
    handler::{ErrorEmitted, Handler},
};
use sway_types::{BaseIdent, Named};

use crate::{
    decl_engine::{DeclEngineGet, DeclId},
    engine_threading::DebugWithEngines,
    language::{
        parsed::*,
        ty::{self, TyAstNodeContent, TyDecl},
        CallPath, ModName,
    },
    semantic_analysis::*,
    Engines, TypeInfo,
};

use super::{
    collection_context::SymbolCollectionContext,
    declaration::auto_impl::{self, EncodingAutoImplContext},
};

#[derive(Clone, Debug)]
pub struct ModuleDepGraphEdge();

impl Display for ModuleDepGraphEdge {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "")
    }
}

pub type ModuleDepGraphNodeId = petgraph::graph::NodeIndex;

#[derive(Clone, Debug)]
pub enum ModuleDepGraphNode {
    Module {},
    Submodule { name: ModName },
}

impl DebugWithEngines for ModuleDepGraphNode {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>, _engines: &Engines) -> std::fmt::Result {
        let text = match self {
            ModuleDepGraphNode::Module { .. } => {
                format!("{:?}", "Root module")
            }
            ModuleDepGraphNode::Submodule { name: mod_name } => {
                format!("{:?}", mod_name.as_str())
            }
        };
        f.write_str(&text)
    }
}

// Represents an ordered graph between declaration id indexes.
pub type ModuleDepNodeGraph = petgraph::graph::DiGraph<ModuleDepGraphNode, ModuleDepGraphEdge>;

pub struct ModuleDepGraph {
    dep_graph: ModuleDepNodeGraph,
    root: ModuleDepGraphNodeId,
    node_name_map: HashMap<String, ModuleDepGraphNodeId>,
}

impl ModuleDepGraph {
    pub(crate) fn new() -> Self {
        Self {
            dep_graph: Default::default(),
            root: Default::default(),
            node_name_map: Default::default(),
        }
    }

    pub fn add_node(&mut self, node: ModuleDepGraphNode) -> ModuleDepGraphNodeId {
        let node_id = self.dep_graph.add_node(node.clone());
        match node {
            ModuleDepGraphNode::Module {} => {}
            ModuleDepGraphNode::Submodule { name: mod_name } => {
                self.node_name_map.insert(mod_name.to_string(), node_id);
            }
        };
        node_id
    }

    pub fn add_root_node(&mut self) -> ModuleDepGraphNodeId {
        self.root = self.add_node(super::module::ModuleDepGraphNode::Module {});
        self.root
    }

    fn get_node_id_for_module(
        &self,
        mod_name: &sway_types::BaseIdent,
    ) -> Option<ModuleDepGraphNodeId> {
        self.node_name_map.get(&mod_name.to_string()).copied()
    }

    /// Prints out GraphViz DOT format for the dependency graph.
    #[allow(dead_code)]
    pub(crate) fn visualize(&self, engines: &Engines, print_graph: Option<String>) {
        if let Some(graph_path) = print_graph {
            use petgraph::dot::{Config, Dot};
            let string_graph = self.dep_graph.filter_map(
                |_idx, node| Some(format!("{:?}", engines.help_out(node))),
                |_idx, edge| Some(format!("{}", edge)),
            );

            let output = format!(
                "{:?}",
                Dot::with_attr_getters(
                    &string_graph,
                    &[Config::NodeNoLabel, Config::EdgeNoLabel],
                    &|_, er| format!("label = {:?}", er.weight()),
                    &|_, nr| {
                        let _node = &self.dep_graph[nr.0];
                        let shape = "";
                        let url = "".to_string();
                        format!("{shape} label = {:?} {url}", nr.1)
                    },
                )
            );

            if graph_path.is_empty() {
                tracing::info!("{output}");
            } else {
                let result = fs::write(graph_path.clone(), output);
                if let Some(error) = result.err() {
                    tracing::error!(
                        "There was an issue while outputting module dep analysis graph to path {graph_path:?}\n{error}"
                    );
                }
            }
        }
    }

    /// Computes the ordered list by dependency, which will be used for evaluating the modules
    /// in the correct order. We run a topological sort and cycle finding algorithm to check
    /// for unsupported cyclic dependency cases.
    pub(crate) fn compute_order(
        &self,
        handler: &Handler,
    ) -> Result<ModuleEvaluationOrder, ErrorEmitted> {
        // Check for dependency cycles in the graph by running the Johnson's algorithm.
        let cycles = self.dep_graph.cycles();
        if !cycles.is_empty() {
            let mut modules = Vec::new();
            for cycle in cycles.first().unwrap() {
                let node = self.dep_graph.node_weight(*cycle).unwrap();
                match node {
                    ModuleDepGraphNode::Module {} => unreachable!(),
                    ModuleDepGraphNode::Submodule { name } => modules.push(name.clone()),
                };
            }
            return Err(handler.emit_err(CompileError::ModuleDepGraphCyclicReference { modules }));
        }

        // Do a topological sort to compute an ordered list of nodes.
        let sorted = match petgraph::algo::toposort(&self.dep_graph, None) {
            Ok(value) => value,
            // If we were not able to toposort, this means there is likely a cycle in the module dependency graph,
            // which we already handled above, so lets just return an empty evaluation order instead of panic'ing.
            // module dependencies, which we have already reported.
            Err(_) => return Err(handler.emit_err(CompileError::ModuleDepGraphEvaluationError {})),
        };

        let sorted = sorted
            .into_iter()
            .filter_map(|node_index| {
                let node = self.dep_graph.node_weight(node_index);
                match node {
                    Some(node) => match node {
                        ModuleDepGraphNode::Module {} => None, // root module
                        ModuleDepGraphNode::Submodule { name: mod_name } => Some(mod_name.clone()),
                    },
                    None => None,
                }
            })
            .rev()
            .collect::<Vec<_>>();

        Ok(sorted)
    }
}

impl ty::TyModule {
    /// Analyzes the given parsed module to produce a dependency graph.
    pub fn build_dep_graph(
        handler: &Handler,
        parsed: &ParseModule,
    ) -> Result<ModuleDepGraph, ErrorEmitted> {
        let mut dep_graph = ModuleDepGraph::new();
        dep_graph.add_root_node();

        let ParseModule { submodules, .. } = parsed;

        // Create graph nodes for each submodule.
        submodules.iter().for_each(|(name, _submodule)| {
            let sub_mod_node =
                dep_graph.add_node(ModuleDepGraphNode::Submodule { name: name.clone() });
            dep_graph
                .dep_graph
                .add_edge(dep_graph.root, sub_mod_node, ModuleDepGraphEdge {});
        });

        // Analyze submodules first in order of declaration.
        submodules.iter().for_each(|(name, submodule)| {
            let _ =
                ty::TySubmodule::build_dep_graph(handler, &mut dep_graph, name.clone(), submodule);
        });

        Ok(dep_graph)
    }

    /// Collects the given parsed module to produce a module symbol map.
    ///
    /// Recursively collects submodules first.
    pub fn collect(
        handler: &Handler,
        engines: &Engines,
        ctx: &mut SymbolCollectionContext,
        parsed: &ParseModule,
    ) -> Result<(), ErrorEmitted> {
        let ParseModule {
            submodules,
            tree,
            module_eval_order,
            attributes: _,
            span: _,
            hash: _,
            ..
        } = parsed;

        // Analyze submodules first in order of evaluation previously computed by the dependency graph.
        module_eval_order.iter().for_each(|eval_mod_name| {
            let (name, submodule) = submodules
                .iter()
                .find(|(submod_name, _submodule)| eval_mod_name == submod_name)
                .unwrap();
            let _ = ty::TySubmodule::collect(handler, engines, ctx, name.clone(), submodule);
        });

        let _ = tree
            .root_nodes
            .iter()
            .map(|node| ty::TyAstNode::collect(handler, engines, ctx, node))
            .filter_map(|res| res.ok())
            .collect::<Vec<_>>();

        Ok(())
    }

    /// Type-check the given parsed module to produce a typed module.
    ///
    /// Recursively type-checks submodules first.
    pub fn type_check(
        handler: &Handler,
        mut ctx: TypeCheckContext,
        engines: &Engines,
        kind: TreeType,
        parsed: &ParseModule,
    ) -> Result<Self, ErrorEmitted> {
        let ParseModule {
            submodules,
            tree,
            attributes,
            span,
            module_eval_order,
            ..
        } = parsed;

        // Type-check submodules first in order of evaluation previously computed by the dependency graph.
        let submodules_res = module_eval_order
            .iter()
            .map(|eval_mod_name| {
                let (name, submodule) = submodules
                    .iter()
                    .find(|(submod_name, _submodule)| eval_mod_name == submod_name)
                    .unwrap();
                Ok((
                    name.clone(),
                    ty::TySubmodule::type_check(
                        handler,
                        ctx.by_ref(),
                        engines,
                        name.clone(),
                        kind,
                        submodule,
                    )?,
                ))
            })
            .collect::<Result<Vec<_>, _>>();

        // TODO: Ordering should be solved across all modules prior to the beginning of type-check.
        let ordered_nodes = node_dependencies::order_ast_nodes_by_dependency(
            handler,
            ctx.engines(),
            tree.root_nodes.clone(),
        )?;

        let mut all_nodes = Self::type_check_nodes(handler, ctx.by_ref(), ordered_nodes)?;

        let submodules = submodules_res?;

        let fallback_fn = collect_fallback_fn(&all_nodes, engines, handler)?;
        match (&kind, &fallback_fn) {
            (TreeType::Contract, _) | (_, None) => {}
            (_, Some(fallback_fn)) => {
                let fallback_fn = engines.de().get(fallback_fn);
                return Err(handler.emit_err(CompileError::FallbackFnsAreContractOnly {
                    span: fallback_fn.span.clone(),
                }));
            }
        }

        if ctx.experimental.new_encoding {
            let main_decl = all_nodes.iter_mut().find_map(|x| match &mut x.content {
                ty::TyAstNodeContent::Declaration(ty::TyDecl::FunctionDecl(decl)) => {
                    (decl.name.as_str() == "main").then(|| engines.de().get(&decl.decl_id))
                }
                _ => None,
            });

            match (&kind, main_decl.is_some()) {
                (TreeType::Predicate, true) => {
                    let mut fn_generator =
                        auto_impl::EncodingAutoImplContext::new(&mut ctx).unwrap();
                    if let Ok(node) = fn_generator.generate_predicate_entry(
                        engines,
                        main_decl.as_ref().unwrap(),
                        handler,
                    ) {
                        all_nodes.push(node)
                    }
                }
                (TreeType::Script, true) => {
                    let mut fn_generator =
                        auto_impl::EncodingAutoImplContext::new(&mut ctx).unwrap();
                    if let Ok(node) = fn_generator.generate_script_entry(
                        engines,
                        main_decl.as_ref().unwrap(),
                        handler,
                    ) {
                        all_nodes.push(node)
                    }
                }
                (TreeType::Contract, _) => {
                    // collect all contract methods
                    let contract_fns = submodules
                        .iter()
                        .flat_map(|x| x.1.module.submodules_recursive())
                        .flat_map(|x| x.1.module.contract_fns(engines))
                        .chain(all_nodes.iter().flat_map(|x| x.contract_fns(engines)))
                        .collect::<Vec<_>>();

                    let mut fn_generator =
                        auto_impl::EncodingAutoImplContext::new(&mut ctx).unwrap();
                    if let Ok(node) = fn_generator.generate_contract_entry(
                        engines,
                        parsed.span.source_id().map(|x| x.module_id()),
                        &contract_fns,
                        fallback_fn,
                        handler,
                    ) {
                        all_nodes.push(node)
                    }
                }
                _ => {}
            }
        }

        Ok(Self {
            span: span.clone(),
            submodules,
            namespace: ctx.namespace.clone(),
            all_nodes,
            attributes: attributes.clone(),
        })
    }

    // Filter and gather impl items
    fn get_all_impls(
        ctx: TypeCheckContext<'_>,
        nodes: &[AstNode],
        predicate: fn(&ImplTrait) -> bool,
    ) -> HashMap<BaseIdent, HashSet<CallPath>> {
        let engines = ctx.engines();
        // Check which structs and enums needs to have auto impl for AbiEncode
        // We need to do this before type checking, because the impls must be right after
        // the declarations
        let mut impls = HashMap::<BaseIdent, HashSet<CallPath>>::new();

        for node in nodes.iter() {
            if let AstNodeContent::Declaration(Declaration::ImplTrait(decl_id)) = &node.content {
                let decl = &*engines.pe().get_impl_trait(decl_id);
                let implementing_for = ctx.engines.te().get(decl.implementing_for.type_id);
                let implementing_for = match &*implementing_for {
                    TypeInfo::Struct(decl) => {
                        Some(ctx.engines().de().get(decl.id()).name().clone())
                    }
                    TypeInfo::Enum(decl) => Some(ctx.engines().de().get(decl.id()).name().clone()),
                    TypeInfo::Custom {
                        qualified_call_path,
                        ..
                    } => Some(qualified_call_path.call_path.suffix.clone()),
                    _ => None,
                };

                if let Some(implementing_for) = implementing_for {
                    if predicate(decl) {
                        impls
                            .entry(implementing_for)
                            .or_default()
                            .insert(decl.trait_name.clone());
                    }
                }
            }
        }

        impls
    }

    fn type_check_nodes(
        handler: &Handler,
        mut ctx: TypeCheckContext,
        nodes: Vec<AstNode>,
    ) -> Result<Vec<ty::TyAstNode>, ErrorEmitted> {
        let engines = ctx.engines();
        let all_abiencode_impls = Self::get_all_impls(ctx.by_ref(), &nodes, |decl| {
            decl.trait_name.suffix.as_str() == "AbiEncode"
        });

        let mut typed_nodes = vec![];
        for node in nodes {
            let auto_impl_encoding_traits = match &node.content {
                AstNodeContent::Declaration(Declaration::StructDeclaration(decl_id)) => {
                    let decl = ctx.engines().pe().get_struct(decl_id);
                    all_abiencode_impls.get(&decl.name).is_none()
                }
                AstNodeContent::Declaration(Declaration::EnumDeclaration(decl_id)) => {
                    let decl = ctx.engines().pe().get_enum(decl_id);
                    all_abiencode_impls.get(&decl.name).is_none()
                }
                _ => false,
            };

            let Ok(node) = ty::TyAstNode::type_check(handler, ctx.by_ref(), node) else {
                continue;
            };

            if ctx.experimental.new_encoding {
                let mut generated = vec![];
                if let (true, Some(mut ctx)) = (
                    auto_impl_encoding_traits,
                    EncodingAutoImplContext::new(&mut ctx),
                ) {
                    match &node.content {
                        TyAstNodeContent::Declaration(decl @ TyDecl::StructDecl(_))
                        | TyAstNodeContent::Declaration(decl @ TyDecl::EnumDecl(_)) => {
                            let (a, b) = ctx.generate(engines, decl);
                            generated.extend(a);
                            generated.extend(b);
                        }
                        _ => {}
                    }
                };

                typed_nodes.push(node);
                typed_nodes.extend(generated);
            } else {
                typed_nodes.push(node);
            }
        }

        Ok(typed_nodes)
    }
}

fn collect_fallback_fn(
    all_nodes: &[ty::TyAstNode],
    engines: &Engines,
    handler: &Handler,
) -> Result<Option<DeclId<ty::TyFunctionDecl>>, ErrorEmitted> {
    let mut fallback_fns = all_nodes
        .iter()
        .filter_map(|x| match &x.content {
            ty::TyAstNodeContent::Declaration(ty::TyDecl::FunctionDecl(decl)) => {
                let d = engines.de().get(&decl.decl_id);
                d.is_fallback().then_some(decl.decl_id)
            }
            _ => None,
        })
        .collect::<Vec<_>>();

    let mut last_error = None;
    for f in fallback_fns.iter().skip(1) {
        let decl = engines.de().get(f);
        last_error = Some(
            handler.emit_err(CompileError::MultipleDefinitionsOfFallbackFunction {
                name: decl.name.clone(),
                span: decl.span.clone(),
            }),
        );
    }

    if let Some(last_error) = last_error {
        return Err(last_error);
    }

    if let Some(fallback_fn) = fallback_fns.pop() {
        let f = engines.de().get(&fallback_fn);
        if !f.parameters.is_empty() {
            Err(
                handler.emit_err(CompileError::FallbackFnsCannotHaveParameters {
                    span: f.span.clone(),
                }),
            )
        } else {
            Ok(Some(fallback_fn))
        }
    } else {
        Ok(None)
    }
}

impl ty::TySubmodule {
    pub fn build_dep_graph(
        _handler: &Handler,
        module_dep_graph: &mut ModuleDepGraph,
        mod_name: ModName,
        submodule: &ParseSubmodule,
    ) -> Result<(), ErrorEmitted> {
        let ParseSubmodule { module, .. } = submodule;
        let sub_mod_node = module_dep_graph.get_node_id_for_module(&mod_name).unwrap();
        for node in module.tree.root_nodes.iter() {
            match &node.content {
                AstNodeContent::UseStatement(use_stmt) => {
                    if let Some(use_mod_ident) = use_stmt.call_path.first() {
                        if let Some(mod_name_node) =
                            module_dep_graph.get_node_id_for_module(use_mod_ident)
                        {
                            // Prevent adding edge loops between the same node as that will throw off
                            // the cyclic dependency analysis.
                            if sub_mod_node != mod_name_node {
                                module_dep_graph.dep_graph.add_edge(
                                    sub_mod_node,
                                    mod_name_node,
                                    ModuleDepGraphEdge {},
                                );
                            }
                        }
                    }
                }
                AstNodeContent::Declaration(_) => {}
                AstNodeContent::Expression(_) => {}
                AstNodeContent::IncludeStatement(_) => {}
                AstNodeContent::Error(_, _) => {}
            }
        }
        Ok(())
    }

    pub fn collect(
        handler: &Handler,
        engines: &Engines,
        parent_ctx: &mut SymbolCollectionContext,
        mod_name: ModName,
        submodule: &ParseSubmodule,
    ) -> Result<(), ErrorEmitted> {
        let ParseSubmodule {
            module,
            mod_name_span: _,
            visibility,
        } = submodule;
        parent_ctx.enter_submodule(
            engines,
            mod_name,
            *visibility,
            module.span.clone(),
            |submod_ctx| ty::TyModule::collect(handler, engines, submod_ctx, module),
        )
    }

    pub fn type_check(
        handler: &Handler,
        parent_ctx: TypeCheckContext,
        engines: &Engines,
        mod_name: ModName,
        kind: TreeType,
        submodule: &ParseSubmodule,
    ) -> Result<Self, ErrorEmitted> {
        let ParseSubmodule {
            module,
            mod_name_span,
            visibility,
        } = submodule;
        parent_ctx.enter_submodule(mod_name, *visibility, module.span.clone(), |submod_ctx| {
            let module_res = ty::TyModule::type_check(handler, submod_ctx, engines, kind, module);
            module_res.map(|module| ty::TySubmodule {
                module,
                mod_name_span: mod_name_span.clone(),
            })
        })
    }
}