1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use crate::{
    error::*, type_engine::*, CallPath, CompileResult, Ident, TypeInfo, TypedDeclaration,
    TypedFunctionDeclaration,
};

use sway_types::span::Span;

use std::collections::{BTreeMap, HashMap};

pub mod arena;
pub use arena::*;

type ModuleName = String;
type TraitName = CallPath;
/// A namespace represents all items that exist either via declaration or importing.
#[derive(Clone, Debug, Default)]
pub struct Namespace {
    // This is a BTreeMap because we rely on its ordering being consistent. See
    // [Namespace::get_all_declared_symbols] -- we need that iterator to have a deterministic
    // order.
    symbols: BTreeMap<Ident, TypedDeclaration>,
    implemented_traits: HashMap<(TraitName, TypeInfo), Vec<TypedFunctionDeclaration>>,
    // Any other modules within this scope, where a module is a namespace associated with an identifier.
    // This is a BTreeMap because we rely on its ordering being consistent. See
    // [Namespace::get_all_imported_modules] -- we need that iterator to have a deterministic
    // order.
    modules: BTreeMap<ModuleName, NamespaceRef>,
    use_synonyms: HashMap<Ident, Vec<Ident>>,
    // Represents an alternative name for a symbol.
    use_aliases: HashMap<String, Ident>,
}

impl Namespace {
    pub fn get_all_declared_symbols(&self) -> impl Iterator<Item = &TypedDeclaration> {
        self.symbols.values()
    }

    pub fn get_all_imported_modules(&self) -> impl Iterator<Item = &NamespaceRef> {
        self.modules.values()
    }

    pub(crate) fn insert(&mut self, name: Ident, item: TypedDeclaration) -> CompileResult<()> {
        let mut warnings = vec![];
        let mut errors = vec![];
        if self.symbols.get(&name).is_some() {
            match item {
                TypedDeclaration::EnumDeclaration { .. }
                | TypedDeclaration::StructDeclaration { .. } => {
                    errors.push(CompileError::ShadowsOtherSymbol {
                        span: name.span().clone(),
                        name: name.as_str().to_string(),
                    });
                    return err(warnings, errors);
                }
                _ => {
                    warnings.push(CompileWarning {
                        span: name.span().clone(),
                        warning_content: Warning::ShadowsOtherSymbol {
                            name: name.span().as_str().to_string(),
                        },
                    });
                }
            }
        }
        self.symbols.insert(name, item);
        ok((), warnings, errors)
    }

    pub(crate) fn insert_trait_implementation(
        &mut self,
        trait_name: CallPath,
        type_implementing_for: TypeInfo,
        functions_buf: Vec<TypedFunctionDeclaration>,
    ) -> CompileResult<()> {
        let mut warnings = vec![];
        let errors = vec![];
        let new_prefixes = if trait_name.prefixes.is_empty() {
            self.use_synonyms
                .get(&trait_name.suffix)
                .unwrap_or(&trait_name.prefixes)
                .clone()
        } else {
            trait_name.prefixes
        };
        let trait_name = CallPath {
            suffix: trait_name.suffix,
            prefixes: new_prefixes,
            is_absolute: trait_name.is_absolute,
        };
        if self
            .implemented_traits
            .insert((trait_name.clone(), type_implementing_for), functions_buf)
            .is_some()
        {
            warnings.push(CompileWarning {
                warning_content: Warning::OverridingTraitImplementation,
                span: trait_name.span(),
            })
        }
        ok((), warnings, errors)
    }

    pub fn insert_module(&mut self, module_name: String, ix: NamespaceRef) {
        self.modules.insert(module_name, ix);
    }

    pub fn insert_dependency_module(&mut self, module_name: String, ix: NamespaceRef) {
        self.insert_module(module_name, ix)
    }

    pub(crate) fn get_methods_for_type(&self, r#type: TypeId) -> Vec<TypedFunctionDeclaration> {
        let mut methods = vec![];
        let r#type = crate::type_engine::look_up_type_id(r#type);
        for ((_trait_name, type_info), l_methods) in &self.implemented_traits {
            if *type_info == r#type {
                methods.append(&mut l_methods.clone());
            }
        }
        methods
    }

    // Given a TypeInfo old_type with a set of methods available to it, make those same methods
    // available to TypeInfo new_type. This is useful in situations where old_type is being
    // monomorphized to new_type and and we want `get_methods_for_type()` to return the same set of
    // methods for new_type as it does for old_type.
    pub(crate) fn copy_methods_to_type(&mut self, old_type: TypeInfo, new_type: TypeInfo) {
        // This map grabs all (trait name, vec of methods) from self.implemented_traits
        // corresponding to `old_type`.
        let mut methods: HashMap<TraitName, Vec<TypedFunctionDeclaration>> = HashMap::new();
        for ((trait_name, type_info), l_methods) in &self.implemented_traits {
            if *type_info == old_type {
                methods.insert((*trait_name).clone(), l_methods.clone());
            }
        }

        // Insert into `self.implemented_traits` the contents of the map above but with `new_type`
        // as the `TypeInfo` key.
        for (trait_name, l_methods) in &methods {
            self.implemented_traits
                .insert(((*trait_name).clone(), new_type.clone()), l_methods.clone());
        }
    }

    pub(crate) fn get_tuple_elems(
        &self,
        ty: TypeId,
        debug_string: impl Into<String>,
        debug_span: &Span,
    ) -> CompileResult<Vec<TypeId>> {
        let warnings = vec![];
        let errors = vec![];
        let ty = crate::type_engine::look_up_type_id(ty);
        match ty {
            TypeInfo::Tuple(elems) => ok(elems, warnings, errors),
            TypeInfo::ErrorRecovery => err(warnings, errors),
            a => err(
                vec![],
                vec![CompileError::NotATuple {
                    name: debug_string.into(),
                    span: debug_span.clone(),
                    actually: a.friendly_type_str(),
                }],
            ),
        }
    }
}