sway_core/ir_generation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
pub(crate) mod compile;
pub mod const_eval;
mod convert;
mod function;
mod lexical_map;
mod purity;
pub mod storage;
mod types;
use std::{
collections::HashMap,
hash::{DefaultHasher, Hasher},
};
use sway_error::error::CompileError;
use sway_features::ExperimentalFeatures;
use sway_ir::{Context, Function, Kind, Module};
use sway_types::{span::Span, Ident};
pub(crate) use purity::{check_function_purity, PurityEnv};
use crate::{
engine_threading::HashWithEngines,
language::ty,
metadata::MetadataManager,
types::{LogId, MessageId},
Engines, TypeId,
};
type FnKey = u64;
/// Every compiled function needs to go through this cache for two reasons:
/// 1 - to have its IR name unique;
/// 2 - to avoid being compiled twice.
#[derive(Default)]
pub(crate) struct CompiledFunctionCache {
recreated_fns: HashMap<FnKey, Function>,
}
impl CompiledFunctionCache {
#[allow(clippy::too_many_arguments)]
fn ty_function_decl_to_unique_function(
&mut self,
engines: &Engines,
context: &mut Context,
module: Module,
md_mgr: &mut MetadataManager,
decl: &ty::TyFunctionDecl,
logged_types_map: &HashMap<TypeId, LogId>,
messages_types_map: &HashMap<TypeId, MessageId>,
) -> Result<Function, CompileError> {
// The compiler inlines everything very lazily. Function calls include the body of the
// callee (i.e., the callee_body arg above). Library functions are provided in an initial
// namespace from Forc and when the parser builds the AST (or is it during type checking?)
// these function bodies are embedded.
//
// Here we build little single-use instantiations of the callee and then call them. Naming
// is not yet absolute so we must ensure the function names are unique.
//
// Eventually we need to Do It Properly and inline into the AST only when necessary, and
// compile the standard library to an actual module.
//
// Get the callee from the cache if we've already compiled it. We can't insert it with
// .entry() since `compile_function()` returns a Result we need to handle. The key to our
// cache, to uniquely identify a function instance, is the span and the type IDs of any
// args and type parameters. It's using the Sway types rather than IR types, which would
// be more accurate but also more fiddly.
let mut hasher = DefaultHasher::default();
decl.hash(&mut hasher, engines);
let fn_key = hasher.finish();
let (fn_key, item) = (Some(fn_key), self.recreated_fns.get(&fn_key).copied());
let new_callee = match item {
Some(func) => func,
None => {
let callee_fn_decl = ty::TyFunctionDecl {
type_parameters: Vec::new(),
name: Ident::new(Span::from_string(format!(
"{}_{}",
decl.name,
context.get_unique_id()
))),
parameters: decl.parameters.clone(),
..decl.clone()
};
// Entry functions are already compiled at the top level
// when compiling scripts, predicates, contracts, and libraries.
let is_entry = false;
let is_original_entry = callee_fn_decl.is_main() || callee_fn_decl.is_test();
let new_func = compile::compile_function(
engines,
context,
md_mgr,
module,
&callee_fn_decl,
&decl.name,
logged_types_map,
messages_types_map,
is_entry,
is_original_entry,
None,
self,
)
.map_err(|mut x| x.pop().unwrap())?
.unwrap();
if let Some(fn_key) = fn_key {
self.recreated_fns.insert(fn_key, new_func);
}
new_func
}
};
Ok(new_callee)
}
}
pub fn compile_program<'eng>(
program: &ty::TyProgram,
include_tests: bool,
engines: &'eng Engines,
experimental: ExperimentalFeatures,
) -> Result<Context<'eng>, Vec<CompileError>> {
let declaration_engine = engines.de();
let test_fns = match include_tests {
true => program.test_fns(declaration_engine).collect(),
false => vec![],
};
let ty::TyProgram {
kind,
root,
logged_types,
messages_types,
declarations,
..
} = program;
let logged_types = logged_types
.iter()
.map(|(log_id, type_id)| (*type_id, *log_id))
.collect();
let messages_types = messages_types
.iter()
.map(|(message_id, type_id)| (*type_id, *message_id))
.collect();
let mut ctx = Context::new(engines.se(), experimental);
ctx.program_kind = match kind {
ty::TyProgramKind::Script { .. } => Kind::Script,
ty::TyProgramKind::Predicate { .. } => Kind::Predicate,
ty::TyProgramKind::Contract { .. } => Kind::Contract,
ty::TyProgramKind::Library { .. } => Kind::Library,
};
let mut cache = CompiledFunctionCache::default();
match kind {
// Predicates and scripts have the same codegen, their only difference is static
// type-check time checks.
ty::TyProgramKind::Script { entry_function, .. } => compile::compile_script(
engines,
&mut ctx,
entry_function,
root.namespace.module(engines),
&logged_types,
&messages_types,
&test_fns,
&mut cache,
),
ty::TyProgramKind::Predicate { entry_function, .. } => compile::compile_predicate(
engines,
&mut ctx,
entry_function,
root.namespace.module(engines),
&logged_types,
&messages_types,
&test_fns,
&mut cache,
),
ty::TyProgramKind::Contract {
entry_function,
abi_entries,
} => compile::compile_contract(
&mut ctx,
entry_function.as_ref(),
abi_entries,
root.namespace.module(engines),
declarations,
&logged_types,
&messages_types,
&test_fns,
engines,
&mut cache,
),
ty::TyProgramKind::Library { .. } => compile::compile_library(
engines,
&mut ctx,
root.namespace.module(engines),
&logged_types,
&messages_types,
&test_fns,
&mut cache,
),
}?;
ctx.verify().map_err(|ir_error: sway_ir::IrError| {
vec![CompileError::InternalOwned(
ir_error.to_string(),
Span::dummy(),
)]
})
}