sway_core/
ir_generation.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
pub(crate) mod compile;
pub mod const_eval;
mod convert;
mod function;
mod lexical_map;
mod purity;
pub mod storage;
mod types;

use std::{
    collections::HashMap,
    hash::{DefaultHasher, Hasher},
};

use sway_error::error::CompileError;
use sway_features::ExperimentalFeatures;
use sway_ir::{Context, Function, Kind, Module};
use sway_types::{span::Span, Ident};

pub(crate) use purity::{check_function_purity, PurityEnv};

use crate::{
    engine_threading::HashWithEngines,
    language::ty,
    metadata::MetadataManager,
    types::{LogId, MessageId},
    Engines, TypeId,
};

type FnKey = u64;

/// Every compiled function needs to go through this cache for two reasons:
/// 1 - to have its IR name unique;
/// 2 - to avoid being compiled twice.
#[derive(Default)]
pub(crate) struct CompiledFunctionCache {
    recreated_fns: HashMap<FnKey, Function>,
}

impl CompiledFunctionCache {
    #[allow(clippy::too_many_arguments)]
    fn ty_function_decl_to_unique_function(
        &mut self,
        engines: &Engines,
        context: &mut Context,
        module: Module,
        md_mgr: &mut MetadataManager,
        decl: &ty::TyFunctionDecl,
        logged_types_map: &HashMap<TypeId, LogId>,
        messages_types_map: &HashMap<TypeId, MessageId>,
    ) -> Result<Function, CompileError> {
        // The compiler inlines everything very lazily.  Function calls include the body of the
        // callee (i.e., the callee_body arg above). Library functions are provided in an initial
        // namespace from Forc and when the parser builds the AST (or is it during type checking?)
        // these function bodies are embedded.
        //
        // Here we build little single-use instantiations of the callee and then call them.  Naming
        // is not yet absolute so we must ensure the function names are unique.
        //
        // Eventually we need to Do It Properly and inline into the AST only when necessary, and
        // compile the standard library to an actual module.
        //
        // Get the callee from the cache if we've already compiled it.  We can't insert it with
        // .entry() since `compile_function()` returns a Result we need to handle.  The key to our
        // cache, to uniquely identify a function instance, is the span and the type IDs of any
        // args and type parameters.  It's using the Sway types rather than IR types, which would
        // be more accurate but also more fiddly.

        let mut hasher = DefaultHasher::default();
        decl.hash(&mut hasher, engines);
        let fn_key = hasher.finish();

        let (fn_key, item) = (Some(fn_key), self.recreated_fns.get(&fn_key).copied());
        let new_callee = match item {
            Some(func) => func,
            None => {
                let callee_fn_decl = ty::TyFunctionDecl {
                    type_parameters: Vec::new(),
                    name: Ident::new(Span::from_string(format!(
                        "{}_{}",
                        decl.name,
                        context.get_unique_id()
                    ))),
                    parameters: decl.parameters.clone(),
                    ..decl.clone()
                };
                // Entry functions are already compiled at the top level
                // when compiling scripts, predicates, contracts, and libraries.
                let is_entry = false;
                let is_original_entry = callee_fn_decl.is_main() || callee_fn_decl.is_test();
                let new_func = compile::compile_function(
                    engines,
                    context,
                    md_mgr,
                    module,
                    &callee_fn_decl,
                    &decl.name,
                    logged_types_map,
                    messages_types_map,
                    is_entry,
                    is_original_entry,
                    None,
                    self,
                )
                .map_err(|mut x| x.pop().unwrap())?
                .unwrap();

                if let Some(fn_key) = fn_key {
                    self.recreated_fns.insert(fn_key, new_func);
                }

                new_func
            }
        };

        Ok(new_callee)
    }
}

pub fn compile_program<'eng>(
    program: &ty::TyProgram,
    include_tests: bool,
    engines: &'eng Engines,
    experimental: ExperimentalFeatures,
) -> Result<Context<'eng>, Vec<CompileError>> {
    let declaration_engine = engines.de();

    let test_fns = match include_tests {
        true => program.test_fns(declaration_engine).collect(),
        false => vec![],
    };

    let ty::TyProgram {
        kind,
        root,
        logged_types,
        messages_types,
        declarations,
        ..
    } = program;

    let logged_types = logged_types
        .iter()
        .map(|(log_id, type_id)| (*type_id, *log_id))
        .collect();

    let messages_types = messages_types
        .iter()
        .map(|(message_id, type_id)| (*type_id, *message_id))
        .collect();

    let mut ctx = Context::new(engines.se(), experimental);
    ctx.program_kind = match kind {
        ty::TyProgramKind::Script { .. } => Kind::Script,
        ty::TyProgramKind::Predicate { .. } => Kind::Predicate,
        ty::TyProgramKind::Contract { .. } => Kind::Contract,
        ty::TyProgramKind::Library { .. } => Kind::Library,
    };

    let mut cache = CompiledFunctionCache::default();

    match kind {
        // Predicates and scripts have the same codegen, their only difference is static
        // type-check time checks.
        ty::TyProgramKind::Script { entry_function, .. } => compile::compile_script(
            engines,
            &mut ctx,
            entry_function,
            root.namespace.module(engines),
            &logged_types,
            &messages_types,
            &test_fns,
            &mut cache,
        ),
        ty::TyProgramKind::Predicate { entry_function, .. } => compile::compile_predicate(
            engines,
            &mut ctx,
            entry_function,
            root.namespace.module(engines),
            &logged_types,
            &messages_types,
            &test_fns,
            &mut cache,
        ),
        ty::TyProgramKind::Contract {
            entry_function,
            abi_entries,
        } => compile::compile_contract(
            &mut ctx,
            entry_function.as_ref(),
            abi_entries,
            root.namespace.module(engines),
            declarations,
            &logged_types,
            &messages_types,
            &test_fns,
            engines,
            &mut cache,
        ),
        ty::TyProgramKind::Library { .. } => compile::compile_library(
            engines,
            &mut ctx,
            root.namespace.module(engines),
            &logged_types,
            &messages_types,
            &test_fns,
            &mut cache,
        ),
    }?;

    ctx.verify().map_err(|ir_error: sway_ir::IrError| {
        vec![CompileError::InternalOwned(
            ir_error.to_string(),
            Span::dummy(),
        )]
    })
}