sway_core/ir_generation/
storage.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
use crate::fuel_prelude::{
    fuel_crypto::Hasher,
    fuel_tx::StorageSlot,
    fuel_types::{Bytes32, Bytes8},
};
use sway_features::ExperimentalFeatures;
use sway_ir::{
    constant::{Constant, ConstantValue},
    context::Context,
    irtype::Type,
};
use sway_types::u256::U256;

/// Determines how values that are less then a word in length
/// has to be padded to word boundary when in structs or enums.
#[derive(Default)]
enum InByte8Padding {
    #[default]
    Right,
    Left,
}

/// Hands out storage keys using storage field names or an existing key.
/// Basically returns sha256((0u8, "storage::<storage_namespace_name1>::<storage_namespace_name2>.<storage_field_name>"))
/// or key if defined.
pub(super) fn get_storage_key(
    storage_field_names: Vec<String>,
    key: Option<U256>,
    experimental: ExperimentalFeatures,
) -> Bytes32 {
    match key {
        Some(key) => key.to_be_bytes().into(),
        None => hash_storage_key_string(get_storage_key_string(&storage_field_names), experimental),
    }
}

pub fn get_storage_key_string(storage_field_names: &[String]) -> String {
    if storage_field_names.len() == 1 {
        format!(
            "{}{}{}",
            sway_utils::constants::STORAGE_TOP_LEVEL_NAMESPACE,
            sway_utils::constants::STORAGE_FIELD_SEPARATOR,
            storage_field_names.last().unwrap(),
        )
    } else {
        format!(
            "{}{}{}{}{}",
            sway_utils::constants::STORAGE_TOP_LEVEL_NAMESPACE,
            sway_utils::constants::STORAGE_NAMESPACE_SEPARATOR,
            storage_field_names
                .iter()
                .take(storage_field_names.len() - 1)
                .cloned()
                .collect::<Vec<_>>()
                .join(sway_utils::constants::STORAGE_NAMESPACE_SEPARATOR),
            sway_utils::constants::STORAGE_FIELD_SEPARATOR,
            storage_field_names.last().unwrap(),
        )
    }
}

/// Hands out unique storage field ids using storage field names and struct field names.
/// Basically returns sha256((0u8, "storage::<storage_namespace_name1>::<storage_namespace_name2>.<storage_field_name>.<struct_field_name1>.<struct_field_name2>")).
pub(super) fn get_storage_field_id(
    storage_field_names: &[String],
    struct_field_names: &[String],
    experimental: ExperimentalFeatures,
) -> Bytes32 {
    let data = format!(
        "{}{}",
        get_storage_key_string(storage_field_names),
        if struct_field_names.is_empty() {
            "".to_string()
        } else {
            format!(
                "{}{}",
                sway_utils::constants::STRUCT_FIELD_SEPARATOR,
                struct_field_names.join(sway_utils::constants::STRUCT_FIELD_SEPARATOR),
            )
        }
    );

    hash_storage_key_string(data, experimental)
}

fn hash_storage_key_string(
    storage_key_string: String,
    experimental: ExperimentalFeatures,
) -> Bytes32 {
    let mut hasher = Hasher::default();
    // Certain storage types, like, e.g., `StorageMap` allow
    // storage slots of their contained elements to be defined
    // based on developer's input. E.g., the `key` in a `StorageMap`
    // used to calculate the storage slot is a developer input.
    //
    // To ensure that pre-images of such storage slots can never
    // be the same as a pre-image of compiler generated key of storage
    // field, we prefix the pre-images with a single byte that denotes
    // the domain. Storage types like `StorageMap` must have a different
    // domain prefix than the `STORAGE_DOMAIN` which is 0u8.
    //
    // For detailed elaboration see: https://github.com/FuelLabs/sway/issues/6317
    if experimental.storage_domains {
        hasher.input(sway_utils::constants::STORAGE_DOMAIN);
    }
    hasher.input(storage_key_string);
    hasher.finalize()
}

use uint::construct_uint;

#[allow(
// These two warnings are generated by the `construct_uint!()` macro below.
    clippy::assign_op_pattern,
    clippy::ptr_offset_with_cast
)]
pub(super) fn add_to_b256(x: Bytes32, y: u64) -> Bytes32 {
    construct_uint! {
        struct U256(4);
    }
    let x = U256::from(*x);
    let y = U256::from(y);
    let res: [u8; 32] = (x + y).into();
    Bytes32::from(res)
}

/// Given a constant value `constant`, a type `ty`, a state index, and a vector of subfield
/// indices, serialize the constant into a vector of storage slots. The keys (slots) are
/// generated using the state index and the subfield indices which are recursively built. The
/// values are generated such that each subfield gets its own storage slot except for enums and
/// strings which are spread over successive storage slots (use `serialize_to_words` in this case).
///
/// This behavior matches the behavior of how storage slots are assigned for storage reads and
/// writes (i.e. how `state_read_*` and `state_write_*` instructions are generated).
pub fn serialize_to_storage_slots(
    constant: &Constant,
    context: &Context,
    storage_field_names: Vec<String>,
    key: Option<U256>,
    ty: &Type,
) -> Vec<StorageSlot> {
    let experimental = context.experimental;
    match &constant.value {
        ConstantValue::Undef => vec![],
        // If not being a part of an aggregate, single byte values like `bool`, `u8`, and unit
        // are stored as a byte at the beginning of the storage slot.
        ConstantValue::Unit if ty.is_unit(context) => vec![StorageSlot::new(
            get_storage_key(storage_field_names, key, experimental),
            Bytes32::new([0; 32]),
        )],
        ConstantValue::Bool(b) if ty.is_bool(context) => {
            vec![StorageSlot::new(
                get_storage_key(storage_field_names, key, experimental),
                Bytes32::new([
                    if *b { 1 } else { 0 },
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                ]),
            )]
        }
        ConstantValue::Uint(b) if ty.is_uint8(context) => {
            vec![StorageSlot::new(
                get_storage_key(storage_field_names, key, experimental),
                Bytes32::new([
                    *b as u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                    0, 0, 0, 0, 0, 0, 0, 0,
                ]),
            )]
        }
        // Similarly, other uint values are stored at the beginning of the storage slot.
        ConstantValue::Uint(n) if ty.is_uint(context) => {
            vec![StorageSlot::new(
                get_storage_key(storage_field_names, key, experimental),
                Bytes32::new(
                    n.to_be_bytes()
                        .iter()
                        .cloned()
                        .chain([0; 24].iter().cloned())
                        .collect::<Vec<u8>>()
                        .try_into()
                        .unwrap(),
                ),
            )]
        }
        ConstantValue::U256(b) if ty.is_uint_of(context, 256) => {
            vec![StorageSlot::new(
                get_storage_key(storage_field_names, key, experimental),
                Bytes32::new(b.to_be_bytes()),
            )]
        }
        ConstantValue::B256(b) if ty.is_b256(context) => {
            vec![StorageSlot::new(
                get_storage_key(storage_field_names, key, experimental),
                Bytes32::new(b.to_be_bytes()),
            )]
        }
        ConstantValue::Array(_a) if ty.is_array(context) => {
            unimplemented!("Arrays in storage have not been implemented yet.")
        }
        _ if ty.is_string_array(context) || ty.is_struct(context) || ty.is_union(context) => {
            // Serialize the constant data in words and add zero words until the number of words
            // is a multiple of 4. This is useful because each storage slot is 4 words.
            // Regarding padding, the top level type in the call is either a string array, struct, or
            // a union. They will properly set the initial padding for the further recursive calls.
            let mut packed = serialize_to_words(constant, context, ty, InByte8Padding::default());
            packed.extend(vec![
                Bytes8::new([0; 8]);
                ((packed.len() + 3) / 4) * 4 - packed.len()
            ]);

            assert!(packed.len() % 4 == 0);

            // Return a list of `StorageSlot`s
            // First get the keys then get the values
            // TODO-MEMLAY: Warning! Here we make an assumption about the memory layout of
            //       string arrays, structs, and enum.
            //       The assumption is that they are rounded to word boundaries
            //       which will very likely always be the case.
            //       We will not refactor the Storage API at the moment to remove this
            //       assumption. It is a questionable effort because we anyhow
            //       want to improve and refactor Storage API in the future.
            let type_size_in_bytes = ty.size(context).in_bytes();
            assert!(
                type_size_in_bytes % 8 == 0,
                "Expected string arrays, structs, and enums to be aligned to word boundary. The type size in bytes was {} and the type was {}.",
                type_size_in_bytes,
                ty.as_string(context)
            );

            let storage_key = get_storage_key(storage_field_names, key, experimental);
            (0..(type_size_in_bytes + 31) / 32)
                .map(|i| add_to_b256(storage_key, i))
                .zip((0..packed.len() / 4).map(|i| {
                    Bytes32::new(
                        Vec::from_iter((0..4).flat_map(|j| *packed[4 * i + j]))
                            .try_into()
                            .unwrap(),
                    )
                }))
                .map(|(k, r)| StorageSlot::new(k, r))
                .collect()
        }
        _ => vec![],
    }
}

/// Given a constant value `constant` and a type `ty`, serialize the constant into a vector of
/// words and apply the requested padding if needed.
fn serialize_to_words(
    constant: &Constant,
    context: &Context,
    ty: &Type,
    padding: InByte8Padding,
) -> Vec<Bytes8> {
    match &constant.value {
        ConstantValue::Undef => vec![],
        ConstantValue::Unit if ty.is_unit(context) => vec![Bytes8::new([0; 8])],
        ConstantValue::Bool(b) if ty.is_bool(context) => match padding {
            InByte8Padding::Right => {
                vec![Bytes8::new([if *b { 1 } else { 0 }, 0, 0, 0, 0, 0, 0, 0])]
            }
            InByte8Padding::Left => {
                vec![Bytes8::new([0, 0, 0, 0, 0, 0, 0, if *b { 1 } else { 0 }])]
            }
        },
        ConstantValue::Uint(n) if ty.is_uint8(context) => match padding {
            InByte8Padding::Right => vec![Bytes8::new([*n as u8, 0, 0, 0, 0, 0, 0, 0])],
            InByte8Padding::Left => vec![Bytes8::new([0, 0, 0, 0, 0, 0, 0, *n as u8])],
        },
        ConstantValue::Uint(n) if ty.is_uint(context) => {
            vec![Bytes8::new(n.to_be_bytes())]
        }
        ConstantValue::U256(b) if ty.is_uint_of(context, 256) => {
            let b = b.to_be_bytes();
            Vec::from_iter((0..4).map(|i| Bytes8::new(b[8 * i..8 * i + 8].try_into().unwrap())))
        }
        ConstantValue::B256(b) if ty.is_b256(context) => {
            let b = b.to_be_bytes();
            Vec::from_iter((0..4).map(|i| Bytes8::new(b[8 * i..8 * i + 8].try_into().unwrap())))
        }
        ConstantValue::String(s) if ty.is_string_array(context) => {
            // Turn the bytes into serialized words (Bytes8) and right pad it to the word boundary.
            let mut s = s.clone();
            s.extend(vec![0; ((s.len() + 7) / 8) * 8 - s.len()]);

            assert!(s.len() % 8 == 0);

            // Group into words.
            Vec::from_iter((0..s.len() / 8).map(|i| {
                Bytes8::new(
                    Vec::from_iter((0..8).map(|j| s[8 * i + j]))
                        .try_into()
                        .unwrap(),
                )
            }))
        }
        ConstantValue::Array(_) if ty.is_array(context) => {
            unimplemented!("Arrays in storage have not been implemented yet.")
        }
        ConstantValue::Struct(vec) if ty.is_struct(context) => {
            let field_tys = ty.get_field_types(context);
            vec.iter()
                .zip(field_tys.iter())
                // TODO-MEMLAY: Warning! Again, making an assumption about the memory layout
                //       of struct fields.
                .flat_map(|(f, ty)| serialize_to_words(f, context, ty, InByte8Padding::Right))
                .collect()
        }
        _ if ty.is_union(context) => {
            let value_size_in_words = ty.size(context).in_words();
            let constant_size_in_words = constant.ty.size(context).in_words();
            assert!(value_size_in_words >= constant_size_in_words);

            // Add enough left padding to satisfy the actual size of the union
            // TODO-MEMLAY: Warning! Here we make an assumption about the memory layout of enums,
            //       that they are left padded.
            //       The memory layout of enums can be changed in the future.
            //       We will not refactor the Storage API at the moment to remove this
            //       assumption. It is a questionable effort because we anyhow
            //       want to improve and refactor Storage API in the future.
            let padding_size_in_words = value_size_in_words - constant_size_in_words;
            vec![Bytes8::new([0; 8]); padding_size_in_words as usize]
                .iter()
                .cloned()
                .chain(
                    serialize_to_words(constant, context, &constant.ty, InByte8Padding::Left)
                        .iter()
                        .cloned(),
                )
                .collect()
        }
        _ => vec![],
    }
}