sway_core/language/parsed/expression/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
use std::{cmp::Ordering, fmt, hash::Hasher};

use crate::{
    decl_engine::parsed_id::ParsedDeclId,
    engine_threading::{
        DebugWithEngines, DisplayWithEngines, EqWithEngines, HashWithEngines, OrdWithEngines,
        OrdWithEnginesContext, PartialEqWithEngines, PartialEqWithEnginesContext,
    },
    language::{parsed::CodeBlock, *},
    type_system::TypeBinding,
    Engines, TypeArgument, TypeId,
};
use sway_error::handler::ErrorEmitted;
use sway_types::{ident::Ident, Span, Spanned};

mod asm;
mod match_branch;
mod method_name;
mod scrutinee;
pub(crate) use asm::*;
pub(crate) use match_branch::MatchBranch;
pub use method_name::MethodName;
pub use scrutinee::*;
use sway_ast::intrinsics::Intrinsic;

use super::{FunctionDeclaration, StructDeclaration};

/// Represents a parsed, but not yet type checked, [Expression](https://en.wikipedia.org/wiki/Expression_(computer_science)).
#[derive(Debug, Clone)]
pub struct Expression {
    pub kind: ExpressionKind,
    pub span: Span,
}

#[derive(Debug, Clone)]
pub struct FunctionApplicationExpression {
    pub call_path_binding: TypeBinding<CallPath>,
    pub resolved_call_path_binding:
        Option<TypeBinding<ResolvedCallPath<ParsedDeclId<FunctionDeclaration>>>>,
    pub arguments: Vec<Expression>,
}

impl EqWithEngines for FunctionApplicationExpression {}
impl PartialEqWithEngines for FunctionApplicationExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.call_path_binding.eq(&other.call_path_binding, ctx)
            && self.arguments.eq(&other.arguments, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct LazyOperatorExpression {
    pub op: LazyOp,
    pub lhs: Box<Expression>,
    pub rhs: Box<Expression>,
}

impl EqWithEngines for LazyOperatorExpression {}
impl PartialEqWithEngines for LazyOperatorExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.op == other.op && self.lhs.eq(&other.lhs, ctx) && self.rhs.eq(&other.rhs, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct TupleIndexExpression {
    pub prefix: Box<Expression>,
    pub index: usize,
    pub index_span: Span,
}

impl EqWithEngines for TupleIndexExpression {}
impl PartialEqWithEngines for TupleIndexExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.prefix.eq(&other.prefix, ctx)
            && self.index == other.index
            && self.index_span == other.index_span
    }
}

#[derive(Debug, Clone)]
pub struct ArrayExpression {
    pub contents: Vec<Expression>,
    pub length_span: Option<Span>,
}

impl EqWithEngines for ArrayExpression {}
impl PartialEqWithEngines for ArrayExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.contents.eq(&other.contents, ctx) && self.length_span == other.length_span
    }
}

#[derive(Debug, Clone)]
pub struct StructExpression {
    pub resolved_call_path_binding:
        Option<TypeBinding<ResolvedCallPath<ParsedDeclId<StructDeclaration>>>>,
    pub call_path_binding: TypeBinding<CallPath>,
    pub fields: Vec<StructExpressionField>,
}

impl EqWithEngines for StructExpression {}
impl PartialEqWithEngines for StructExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.call_path_binding.eq(&other.call_path_binding, ctx)
            && self.fields.eq(&other.fields, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct IfExpression {
    pub condition: Box<Expression>,
    pub then: Box<Expression>,
    pub r#else: Option<Box<Expression>>,
}

impl EqWithEngines for IfExpression {}
impl PartialEqWithEngines for IfExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.condition.eq(&other.condition, ctx)
            && self.then.eq(&other.then, ctx)
            && self.r#else.eq(&other.r#else, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct MatchExpression {
    pub value: Box<Expression>,
    pub branches: Vec<MatchBranch>,
}

impl EqWithEngines for MatchExpression {}
impl PartialEqWithEngines for MatchExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.value.eq(&other.value, ctx) && self.branches.eq(&other.branches, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct MethodApplicationExpression {
    pub method_name_binding: TypeBinding<MethodName>,
    pub contract_call_params: Vec<StructExpressionField>,
    pub arguments: Vec<Expression>,
}

impl EqWithEngines for MethodApplicationExpression {}
impl PartialEqWithEngines for MethodApplicationExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.method_name_binding.eq(&other.method_name_binding, ctx)
            && self
                .contract_call_params
                .eq(&other.contract_call_params, ctx)
            && self.arguments.eq(&other.arguments, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct SubfieldExpression {
    pub prefix: Box<Expression>,
    pub field_to_access: Ident,
}

impl EqWithEngines for SubfieldExpression {}
impl PartialEqWithEngines for SubfieldExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.prefix.eq(&other.prefix, ctx) && self.field_to_access == other.field_to_access
    }
}

#[derive(Debug, Clone)]
pub struct AmbiguousSuffix {
    /// If the suffix is a pair, the ambiguous part of the suffix.
    ///
    /// For example, if we have `Foo::bar()`,
    /// we don't know whether `Foo` is a module or a type,
    /// so `before` would be `Foo` here with any type arguments.
    pub before: Option<TypeBinding<Ident>>,
    /// The final suffix, i.e., the function or variant name.
    ///
    /// In the example above, this would be `bar`.
    pub suffix: Ident,
}

impl EqWithEngines for AmbiguousSuffix {}
impl PartialEqWithEngines for AmbiguousSuffix {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.before.eq(&other.before, ctx) && self.suffix == other.suffix
    }
}

impl Spanned for AmbiguousSuffix {
    fn span(&self) -> Span {
        if let Some(before) = &self.before {
            Span::join(before.span(), &self.suffix.span())
        } else {
            self.suffix.span()
        }
    }
}

#[derive(Debug, Clone)]
pub struct QualifiedPathType {
    pub ty: TypeArgument,
    pub as_trait: TypeId,
    pub as_trait_span: Span,
}

impl HashWithEngines for QualifiedPathType {
    fn hash<H: Hasher>(&self, state: &mut H, engines: &Engines) {
        let QualifiedPathType {
            ty,
            as_trait,
            // ignored fields
            as_trait_span: _,
        } = self;
        ty.hash(state, engines);
        engines.te().get(*as_trait).hash(state, engines);
    }
}

impl EqWithEngines for QualifiedPathType {}
impl PartialEqWithEngines for QualifiedPathType {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        let QualifiedPathType {
            ty,
            as_trait,
            // ignored fields
            as_trait_span: _,
        } = self;
        ty.eq(&other.ty, ctx)
            && ctx
                .engines()
                .te()
                .get(*as_trait)
                .eq(&ctx.engines().te().get(other.as_trait), ctx)
    }
}

impl OrdWithEngines for QualifiedPathType {
    fn cmp(&self, other: &Self, ctx: &OrdWithEnginesContext) -> Ordering {
        let QualifiedPathType {
            ty: l_ty,
            as_trait: l_as_trait,
            // ignored fields
            as_trait_span: _,
        } = self;
        let QualifiedPathType {
            ty: r_ty,
            as_trait: r_as_trait,
            // ignored fields
            as_trait_span: _,
        } = other;
        l_ty.cmp(r_ty, ctx).then_with(|| {
            ctx.engines()
                .te()
                .get(*l_as_trait)
                .cmp(&ctx.engines().te().get(*r_as_trait), ctx)
        })
    }
}

impl DisplayWithEngines for QualifiedPathType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>, engines: &Engines) -> fmt::Result {
        write!(
            f,
            "<{} as {}>",
            engines.help_out(self.ty.clone()),
            engines.help_out(self.as_trait)
        )
    }
}

impl DebugWithEngines for QualifiedPathType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>, engines: &Engines) -> fmt::Result {
        write!(f, "{}", engines.help_out(self),)
    }
}

#[derive(Debug, Clone)]
pub struct AmbiguousPathExpression {
    pub qualified_path_root: Option<QualifiedPathType>,
    pub call_path_binding: TypeBinding<CallPath<AmbiguousSuffix>>,
    pub args: Vec<Expression>,
}

impl EqWithEngines for AmbiguousPathExpression {}
impl PartialEqWithEngines for AmbiguousPathExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.qualified_path_root.eq(&other.qualified_path_root, ctx)
            && PartialEqWithEngines::eq(&self.call_path_binding, &other.call_path_binding, ctx)
            && self.args.eq(&other.args, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct DelineatedPathExpression {
    pub call_path_binding: TypeBinding<QualifiedCallPath>,
    /// When args is equal to Option::None then it means that the
    /// [DelineatedPathExpression] was initialized from an expression
    /// that does not end with parenthesis.
    pub args: Option<Vec<Expression>>,
}

impl EqWithEngines for DelineatedPathExpression {}
impl PartialEqWithEngines for DelineatedPathExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.call_path_binding.eq(&other.call_path_binding, ctx) && self.args.eq(&other.args, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct AbiCastExpression {
    pub abi_name: CallPath,
    pub address: Box<Expression>,
}

impl EqWithEngines for AbiCastExpression {}
impl PartialEqWithEngines for AbiCastExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        PartialEqWithEngines::eq(&self.abi_name, &other.abi_name, ctx)
            && self.address.eq(&other.address, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct ArrayIndexExpression {
    pub prefix: Box<Expression>,
    pub index: Box<Expression>,
}

impl EqWithEngines for ArrayIndexExpression {}
impl PartialEqWithEngines for ArrayIndexExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.prefix.eq(&other.prefix, ctx) && self.index.eq(&other.index, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct StorageAccessExpression {
    pub namespace_names: Vec<Ident>,
    pub field_names: Vec<Ident>,
    pub storage_keyword_span: Span,
}

impl EqWithEngines for StorageAccessExpression {}
impl PartialEqWithEngines for StorageAccessExpression {
    fn eq(&self, other: &Self, _ctx: &PartialEqWithEnginesContext) -> bool {
        self.field_names.eq(&other.field_names)
            && self.storage_keyword_span.eq(&other.storage_keyword_span)
    }
}

#[derive(Debug, Clone)]
pub struct IntrinsicFunctionExpression {
    pub name: Ident,
    pub kind_binding: TypeBinding<Intrinsic>,
    pub arguments: Vec<Expression>,
}

impl EqWithEngines for IntrinsicFunctionExpression {}
impl PartialEqWithEngines for IntrinsicFunctionExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.name.eq(&other.name)
            && self.kind_binding.eq(&other.kind_binding, ctx)
            && self.arguments.eq(&other.arguments, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct WhileLoopExpression {
    pub condition: Box<Expression>,
    pub body: CodeBlock,
}

impl EqWithEngines for WhileLoopExpression {}
impl PartialEqWithEngines for WhileLoopExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.condition.eq(&other.condition, ctx) && self.body.eq(&other.body, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct ForLoopExpression {
    pub desugared: Box<Expression>,
}

impl EqWithEngines for ForLoopExpression {}
impl PartialEqWithEngines for ForLoopExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.desugared.eq(&other.desugared, ctx)
    }
}

#[derive(Debug, Clone)]
pub struct ReassignmentExpression {
    pub lhs: ReassignmentTarget,
    pub rhs: Box<Expression>,
}

impl EqWithEngines for ReassignmentExpression {}
impl PartialEqWithEngines for ReassignmentExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.lhs.eq(&other.lhs, ctx) && self.rhs.eq(&other.rhs, ctx)
    }
}

#[derive(Debug, Clone)]
pub enum ExpressionKind {
    /// A malformed expression.
    ///
    /// Used for parser recovery when we cannot form a more specific node.
    /// The list of `Span`s are for consumption by the LSP and are,
    /// when joined, the same as that stored in `expr.span`.
    Error(Box<[Span]>, ErrorEmitted),
    Literal(Literal),
    /// An ambiguous path where we don't know until type checking whether this
    /// is a free function call, an enum variant or a UFCS (Rust term) style associated function call.
    AmbiguousPathExpression(Box<AmbiguousPathExpression>),
    FunctionApplication(Box<FunctionApplicationExpression>),
    LazyOperator(LazyOperatorExpression),
    /// And ambiguous single ident which could either be a variable or an enum variant
    AmbiguousVariableExpression(Ident),
    Variable(Ident),
    Tuple(Vec<Expression>),
    TupleIndex(TupleIndexExpression),
    Array(ArrayExpression),
    Struct(Box<StructExpression>),
    CodeBlock(CodeBlock),
    If(IfExpression),
    Match(MatchExpression),
    // separated into other struct for parsing reasons
    Asm(Box<AsmExpression>),
    MethodApplication(Box<MethodApplicationExpression>),
    /// A _subfield expression_ is anything of the form:
    /// ```ignore
    /// <ident>.<ident>
    /// ```
    ///
    Subfield(SubfieldExpression),
    /// A _delineated path_ is anything of the form:
    /// ```ignore
    /// <ident>::<ident>
    /// ```
    /// Where there are `n >= 2` idents.
    /// These could be either enum variant constructions, or they could be
    /// references to some sort of module in the module tree.
    /// For example, a reference to a module:
    /// ```ignore
    /// std::ops::add
    /// ```
    ///
    /// And, an enum declaration:
    /// ```ignore
    /// enum MyEnum {
    ///   Variant1,
    ///   Variant2
    /// }
    ///
    /// MyEnum::Variant1
    /// ```
    DelineatedPath(Box<DelineatedPathExpression>),
    /// A cast of a hash to an ABI for calling a contract.
    AbiCast(Box<AbiCastExpression>),
    ArrayIndex(ArrayIndexExpression),
    StorageAccess(StorageAccessExpression),
    IntrinsicFunction(IntrinsicFunctionExpression),
    /// A control flow element which loops continually until some boolean expression evaluates as
    /// `false`.
    WhileLoop(WhileLoopExpression),
    /// A control flow element which loops between values of an iterator.
    ForLoop(ForLoopExpression),
    Break,
    Continue,
    Reassignment(ReassignmentExpression),
    /// An implicit return expression is different from a [Expression::Return] because
    /// it is not a control flow item. Therefore it is a different variant.
    ///
    /// An implicit return expression is an [Expression] at the end of a code block which has no
    /// semicolon, denoting that it is the [Expression] to be returned from that block.
    ImplicitReturn(Box<Expression>),
    Return(Box<Expression>),
    Ref(RefExpression),
    Deref(Box<Expression>),
}

impl EqWithEngines for Expression {}
impl PartialEqWithEngines for Expression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.kind.eq(&other.kind, ctx)
    }
}

impl EqWithEngines for ExpressionKind {}
impl PartialEqWithEngines for ExpressionKind {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        match (self, other) {
            (ExpressionKind::Error(l_span, _), ExpressionKind::Error(r_span, _)) => {
                l_span == r_span
            }
            (ExpressionKind::Literal(l_literal), ExpressionKind::Literal(r_literal)) => {
                l_literal == r_literal
            }
            (
                ExpressionKind::AmbiguousPathExpression(lhs),
                ExpressionKind::AmbiguousPathExpression(rhs),
            ) => lhs.eq(rhs, ctx),
            (
                ExpressionKind::FunctionApplication(lhs),
                ExpressionKind::FunctionApplication(rhs),
            ) => lhs.eq(rhs, ctx),
            (ExpressionKind::LazyOperator(lhs), ExpressionKind::LazyOperator(rhs)) => {
                lhs.eq(rhs, ctx)
            }
            (
                ExpressionKind::AmbiguousVariableExpression(lhs),
                ExpressionKind::AmbiguousVariableExpression(rhs),
            ) => lhs == rhs,
            (ExpressionKind::Variable(lhs), ExpressionKind::Variable(rhs)) => lhs == rhs,
            (ExpressionKind::Tuple(lhs), ExpressionKind::Tuple(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::TupleIndex(lhs), ExpressionKind::TupleIndex(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::Array(lhs), ExpressionKind::Array(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::Struct(lhs), ExpressionKind::Struct(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::CodeBlock(lhs), ExpressionKind::CodeBlock(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::If(lhs), ExpressionKind::If(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::Match(lhs), ExpressionKind::Match(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::Asm(lhs), ExpressionKind::Asm(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::MethodApplication(lhs), ExpressionKind::MethodApplication(rhs)) => {
                lhs.eq(rhs, ctx)
            }
            (ExpressionKind::Subfield(lhs), ExpressionKind::Subfield(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::DelineatedPath(lhs), ExpressionKind::DelineatedPath(rhs)) => {
                lhs.eq(rhs, ctx)
            }
            (ExpressionKind::AbiCast(lhs), ExpressionKind::AbiCast(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::ArrayIndex(lhs), ExpressionKind::ArrayIndex(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::StorageAccess(lhs), ExpressionKind::StorageAccess(rhs)) => {
                lhs.eq(rhs, ctx)
            }
            (ExpressionKind::IntrinsicFunction(lhs), ExpressionKind::IntrinsicFunction(rhs)) => {
                lhs.eq(rhs, ctx)
            }
            (ExpressionKind::WhileLoop(lhs), ExpressionKind::WhileLoop(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::ForLoop(lhs), ExpressionKind::ForLoop(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::Break, ExpressionKind::Break) => true,
            (ExpressionKind::Continue, ExpressionKind::Continue) => true,
            (ExpressionKind::Reassignment(lhs), ExpressionKind::Reassignment(rhs)) => {
                lhs.eq(rhs, ctx)
            }
            (ExpressionKind::ImplicitReturn(lhs), ExpressionKind::ImplicitReturn(rhs)) => {
                lhs.eq(rhs, ctx)
            }
            (ExpressionKind::Return(lhs), ExpressionKind::Return(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::Ref(lhs), ExpressionKind::Ref(rhs)) => lhs.eq(rhs, ctx),
            (ExpressionKind::Deref(lhs), ExpressionKind::Deref(rhs)) => lhs.eq(rhs, ctx),
            _ => false,
        }
    }
}

#[derive(Debug, Clone)]
pub struct RefExpression {
    /// True if the reference is a reference to a mutable `value`.
    pub to_mutable_value: bool,
    pub value: Box<Expression>,
}

impl EqWithEngines for RefExpression {}
impl PartialEqWithEngines for RefExpression {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.to_mutable_value.eq(&other.to_mutable_value) && self.value.eq(&other.value, ctx)
    }
}

#[derive(Debug, Clone)]
pub enum ReassignmentTarget {
    /// An [Expression] representing a single variable or a path
    /// to a part of an aggregate.
    /// E.g.:
    ///  - `my_variable`
    ///  - `array[0].field.x.1`
    ElementAccess(Box<Expression>),
    /// An dereferencing [Expression] representing dereferencing
    /// of an arbitrary reference expression.
    /// E.g.:
    ///  - *my_ref
    ///  - **if x > 0 { &mut &mut a } else { &mut &mut b }
    Deref(Box<Expression>),
}

impl EqWithEngines for ReassignmentTarget {}
impl PartialEqWithEngines for ReassignmentTarget {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        match (self, other) {
            (ReassignmentTarget::ElementAccess(lhs), ReassignmentTarget::ElementAccess(rhs)) => {
                lhs.eq(rhs, ctx)
            }
            (ReassignmentTarget::Deref(lhs), ReassignmentTarget::Deref(rhs)) => lhs.eq(rhs, ctx),
            _ => false,
        }
    }
}

#[derive(Debug, Clone)]
pub struct StructExpressionField {
    pub name: Ident,
    pub value: Expression,
}

impl EqWithEngines for StructExpressionField {}
impl PartialEqWithEngines for StructExpressionField {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.name == other.name && self.value.eq(&other.value, ctx)
    }
}

impl Spanned for Expression {
    fn span(&self) -> Span {
        self.span.clone()
    }
}

#[derive(Debug)]
pub(crate) struct Op {
    pub span: Span,
    pub op_variant: OpVariant,
}

impl Op {
    pub fn to_var_name(&self) -> Ident {
        Ident::new_with_override(self.op_variant.as_str().to_string(), self.span.clone())
    }
}

#[derive(Debug)]
pub enum OpVariant {
    Add,
    Subtract,
    Divide,
    Multiply,
    Modulo,
    Or,
    And,
    Equals,
    NotEquals,
    Xor,
    BinaryOr,
    BinaryAnd,
    GreaterThan,
    LessThan,
    GreaterThanOrEqualTo,
    LessThanOrEqualTo,
}

impl OpVariant {
    fn as_str(&self) -> &'static str {
        use OpVariant::*;
        match self {
            Add => "add",
            Subtract => "subtract",
            Divide => "divide",
            Multiply => "multiply",
            Modulo => "modulo",
            Or => "$or$",
            And => "$and$",
            Equals => "eq",
            NotEquals => "neq",
            Xor => "xor",
            BinaryOr => "binary_or",
            BinaryAnd => "binary_and",
            GreaterThan => "gt",
            LessThan => "lt",
            LessThanOrEqualTo => "le",
            GreaterThanOrEqualTo => "ge",
        }
    }
}