sway_core/language/ty/declaration/
storage.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
use std::hash::{Hash, Hasher};

use sway_error::{
    error::{CompileError, StructFieldUsageContext},
    handler::{ErrorEmitted, Handler},
};
use sway_types::{Ident, Named, Span, Spanned};

use crate::{
    engine_threading::*,
    ir_generation::storage::get_storage_key_string,
    language::parsed::StorageDeclaration,
    transform::{self},
    ty::*,
    type_system::*,
    Namespace,
};

#[derive(Clone, Debug)]
pub struct TyStorageDecl {
    pub fields: Vec<TyStorageField>,
    pub span: Span,
    pub attributes: transform::AttributesMap,
    pub storage_keyword: Ident,
}

impl TyDeclParsedType for TyStorageDecl {
    type ParsedType = StorageDeclaration;
}

impl Named for TyStorageDecl {
    fn name(&self) -> &Ident {
        &self.storage_keyword
    }
}

impl EqWithEngines for TyStorageDecl {}
impl PartialEqWithEngines for TyStorageDecl {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.fields.eq(&other.fields, ctx) && self.attributes == other.attributes
    }
}

impl HashWithEngines for TyStorageDecl {
    fn hash<H: Hasher>(&self, state: &mut H, engines: &Engines) {
        let TyStorageDecl {
            fields,
            // these fields are not hashed because they aren't relevant/a
            // reliable source of obj v. obj distinction
            span: _,
            attributes: _,
            storage_keyword: _,
        } = self;
        fields.hash(state, engines);
    }
}

impl Spanned for TyStorageDecl {
    fn span(&self) -> Span {
        self.span.clone()
    }
}

impl TyStorageDecl {
    /// Given a path that consists of `fields`, where the first field is one of the storage fields,
    /// find the type information of all the elements in the path and return it as a [TyStorageAccess].
    ///
    /// The first element in the `fields` must be one of the storage fields.
    /// The last element in the `fields` can, but must not be, a struct.
    /// All the elements in between must be structs.
    ///
    /// An error is returned if the above constraints are violated or if the access to the struct fields
    /// fails. E.g, if the struct field does not exists or is an inaccessible private field.
    #[allow(clippy::too_many_arguments)]
    pub fn apply_storage_load(
        &self,
        handler: &Handler,
        engines: &Engines,
        namespace: &Namespace,
        namespace_names: &[Ident],
        fields: &[Ident],
        storage_fields: &[TyStorageField],
        storage_keyword_span: Span,
    ) -> Result<(TyStorageAccess, TypeId), ErrorEmitted> {
        let type_engine = engines.te();
        let decl_engine = engines.de();

        // The resulting storage access descriptors, built on the go as we move through the `fields`.
        let mut access_descriptors = vec![];
        // The field we've analyzed before the current field we are on, and its type id.
        let mut previous_field: &Ident;
        let mut previous_field_type_id: TypeId;

        let (first_field, remaining_fields) = fields.split_first().expect(
            "Having at least one element in the storage load is guaranteed by the grammar.",
        );

        let (initial_field_type, initial_field_key, initial_field_name) =
            match storage_fields.iter().find(|sf| {
                &sf.name == first_field
                    && sf.namespace_names.len() == namespace_names.len()
                    && sf
                        .namespace_names
                        .iter()
                        .zip(namespace_names.iter())
                        .all(|(n1, n2)| n1 == n2)
            }) {
                Some(TyStorageField {
                    type_argument,
                    key_expression,
                    name,
                    ..
                }) => (type_argument.type_id, key_expression, name),
                None => {
                    return Err(handler.emit_err(CompileError::StorageFieldDoesNotExist {
                        field_name: first_field.into(),
                        available_fields: storage_fields
                            .iter()
                            .map(|sf| (sf.namespace_names.clone(), sf.name.clone()))
                            .collect(),
                        storage_decl_span: self.span(),
                    }));
                }
            };

        access_descriptors.push(TyStorageAccessDescriptor {
            name: first_field.clone(),
            type_id: initial_field_type,
            span: first_field.span(),
        });

        previous_field = first_field;
        previous_field_type_id = initial_field_type;

        // Storage cannot contain references, so there is no need for checking
        // if the declaration is a reference to a struct. References can still
        // be erroneously declared in the storage, and the type behind a concrete
        // field access might be a reference to struct, but we do not treat that
        // as a special case but just another one "not a struct".
        // The FieldAccessOnNonStruct error message will explain that in the case
        // of storage access, fields can be accessed only on structs.
        let get_struct_decl = |type_id: TypeId| match &*type_engine.get(type_id) {
            TypeInfo::Struct(decl_ref) => Some(decl_engine.get_struct(decl_ref)),
            _ => None,
        };

        let mut struct_field_names = vec![];

        for field in remaining_fields {
            match get_struct_decl(previous_field_type_id) {
                Some(struct_decl) => {
                    let (struct_can_be_changed, is_public_struct_access) =
                        StructAccessInfo::get_info(engines, &struct_decl, namespace).into();

                    match struct_decl.find_field(field) {
                        Some(struct_field) => {
                            if is_public_struct_access && struct_field.is_private() {
                                return Err(handler.emit_err(CompileError::StructFieldIsPrivate {
                                    field_name: field.into(),
                                    struct_name: struct_decl.call_path.suffix.clone(),
                                    field_decl_span: struct_field.name.span(),
                                    struct_can_be_changed,
                                    usage_context: StructFieldUsageContext::StorageAccess,
                                }));
                            }

                            // Everything is fine. Push the storage access descriptor and move to the next field.

                            let current_field_type_id = struct_field.type_argument.type_id;

                            access_descriptors.push(TyStorageAccessDescriptor {
                                name: field.clone(),
                                type_id: current_field_type_id,
                                span: field.span(),
                            });

                            struct_field_names.push(field.as_str().to_string());

                            previous_field = field;
                            previous_field_type_id = current_field_type_id;
                        }
                        None => {
                            // Since storage cannot be passed to other modules, the access
                            // is always in the module of the storage declaration.
                            // If the struct cannot be instantiated in this module at all,
                            // we will just show the error, without any additional help lines
                            // showing available fields or anything.
                            // Note that if the struct is empty it can always be instantiated.
                            let struct_can_be_instantiated =
                                !is_public_struct_access || !struct_decl.has_private_fields();

                            let available_fields = if struct_can_be_instantiated {
                                struct_decl.accessible_fields_names(is_public_struct_access)
                            } else {
                                vec![]
                            };

                            return Err(handler.emit_err(CompileError::StructFieldDoesNotExist {
                                field_name: field.into(),
                                available_fields,
                                is_public_struct_access,
                                struct_name: struct_decl.call_path.suffix.clone(),
                                struct_decl_span: struct_decl.span(),
                                struct_is_empty: struct_decl.is_empty(),
                                usage_context: StructFieldUsageContext::StorageAccess,
                            }));
                        }
                    }
                }
                None => {
                    return Err(handler.emit_err(CompileError::FieldAccessOnNonStruct {
                        actually: engines.help_out(previous_field_type_id).to_string(),
                        storage_variable: Some(previous_field.to_string()),
                        field_name: field.into(),
                        span: previous_field.span(),
                    }))
                }
            };
        }

        let return_type = access_descriptors[access_descriptors.len() - 1].type_id;

        Ok((
            TyStorageAccess {
                fields: access_descriptors,
                key_expression: initial_field_key.clone().map(Box::new),
                storage_field_names: namespace_names
                    .iter()
                    .map(|n| n.as_str().to_string())
                    .chain(vec![initial_field_name.as_str().to_string()])
                    .collect(),
                struct_field_names,
                storage_keyword_span,
            },
            return_type,
        ))
    }
}

impl Spanned for TyStorageField {
    fn span(&self) -> Span {
        self.span.clone()
    }
}

#[derive(Clone, Debug)]
pub struct TyStorageField {
    pub name: Ident,
    pub namespace_names: Vec<Ident>,
    pub key_expression: Option<TyExpression>,
    pub type_argument: TypeArgument,
    pub initializer: TyExpression,
    pub(crate) span: Span,
    pub attributes: transform::AttributesMap,
}

impl TyStorageField {
    /// Returns the full name of the [TyStorageField], consisting
    /// of its name preceded by its full namespace path.
    /// E.g., "storage::ns1::ns1.name".
    pub fn full_name(&self) -> String {
        get_storage_key_string(
            &self
                .namespace_names
                .iter()
                .map(|i| i.as_str().to_string())
                .chain(vec![self.name.as_str().to_string()])
                .collect::<Vec<_>>(),
        )
    }
}

impl EqWithEngines for TyStorageField {}
impl PartialEqWithEngines for TyStorageField {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.name == other.name
            && self.namespace_names.eq(&other.namespace_names)
            && self.type_argument.eq(&other.type_argument, ctx)
            && self.initializer.eq(&other.initializer, ctx)
    }
}

impl HashWithEngines for TyStorageField {
    fn hash<H: Hasher>(&self, state: &mut H, engines: &Engines) {
        let TyStorageField {
            name,
            namespace_names,
            key_expression,
            type_argument,
            initializer,
            // these fields are not hashed because they aren't relevant/a
            // reliable source of obj v. obj distinction
            span: _,
            attributes: _,
        } = self;
        name.hash(state);
        namespace_names.hash(state);
        key_expression.hash(state, engines);
        type_argument.hash(state, engines);
        initializer.hash(state, engines);
    }
}