sway_core/semantic_analysis/namespace/namespace.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
use crate::{
language::{ty, CallPath, Visibility},
Engines, Ident, TypeId,
};
use super::{
module::Module,
root::{ResolvedDeclaration, Root},
submodule_namespace::SubmoduleNamespace,
ModulePath, ModulePathBuf,
};
use sway_error::handler::{ErrorEmitted, Handler};
use sway_types::span::Span;
/// The set of items that represent the namespace context passed throughout type checking.
#[derive(Clone, Debug, Default)]
pub struct Namespace {
/// An immutable namespace that consists of the names that should always be present, no matter
/// what module or scope we are currently checking.
///
/// These include external library dependencies and (when it's added) the `std` prelude.
///
/// This is passed through type-checking in order to initialise the namespace of each submodule
/// within the project.
init: Module,
/// The `root` of the project namespace.
///
/// From the root, the entirety of the project's namespace can always be accessed.
///
/// The root is initialised from the `init` namespace before type-checking begins.
pub(crate) root: Root,
/// An absolute path from the `root` that represents the current module being checked.
///
/// E.g. when type-checking the root module, this is equal to `[]`. When type-checking a
/// submodule of the root called "foo", this would be equal to `[foo]`.
pub(crate) mod_path: ModulePathBuf,
}
impl Namespace {
pub fn new() -> Self {
Self {
init: Module::default(),
mod_path: vec![],
root: Root::default(),
}
}
pub fn program_id(&self, engines: &Engines) -> &Module {
self.root
.module
.submodule(engines, &self.mod_path)
.unwrap_or_else(|| panic!("Could not retrieve submodule for mod_path."))
}
/// Initialise the namespace at its root from the given initial namespace.
/// If the root module contains submodules these are now considered external.
pub fn init_root(root: &mut Root) -> Self {
assert!(
!root.module.is_external,
"The root module must not be external during compilation"
);
let mod_path = vec![];
// A copy of the root module is used to initialize every new submodule in the program.
//
// Every submodule that has been added before calling init_root is now considered
// external, which we have to enforce at this point.
fn set_submodules_external(module: &mut Module) {
for (_, submod) in module.submodules_mut().iter_mut() {
if !submod.is_external {
submod.is_external = true;
set_submodules_external(submod);
}
}
}
set_submodules_external(&mut root.module);
// The init module itself is not external
root.module.is_external = false;
Self {
init: root.module.clone(),
root: root.clone(),
mod_path,
}
}
/// A reference to the path of the module currently being processed.
pub fn mod_path(&self) -> &ModulePath {
&self.mod_path
}
/// Prepends the module path into the prefixes.
pub fn prepend_module_path<'a>(
&'a self,
prefixes: impl IntoIterator<Item = &'a Ident>,
) -> ModulePathBuf {
self.mod_path.iter().chain(prefixes).cloned().collect()
}
/// A reference to the root of the project namespace.
pub fn root(&self) -> &Root {
&self.root
}
pub fn root_module(&self) -> &Module {
&self.root.module
}
/// Access to the current [Module], i.e. the module at the inner `mod_path`.
pub fn module(&self, engines: &Engines) -> &Module {
self.root
.module
.lookup_submodule(&Handler::default(), engines, &self.mod_path)
.unwrap()
}
/// Mutable access to the current [Module], i.e. the module at the inner `mod_path`.
pub fn module_mut(&mut self, engines: &Engines) -> &mut Module {
self.root
.module
.lookup_submodule_mut(&Handler::default(), engines, &self.mod_path)
.unwrap()
}
pub fn lookup_submodule_from_absolute_path(
&self,
handler: &Handler,
engines: &Engines,
path: &ModulePath,
) -> Result<&Module, ErrorEmitted> {
self.root.module.lookup_submodule(handler, engines, path)
}
/// Returns true if the current module being checked is a direct or indirect submodule of
/// the module given by the `absolute_module_path`.
///
/// The current module being checked is determined by `mod_path`.
///
/// E.g., the `mod_path` `[fist, second, third]` of the root `foo` is a submodule of the module
/// `[foo, first]`. Note that the `mod_path` does not contain the root name, while the
/// `absolute_module_path` always contains it.
///
/// If the current module being checked is the same as the module given by the `absolute_module_path`,
/// the `true_if_same` is returned.
pub(crate) fn module_is_submodule_of(
&self,
_engines: &Engines,
absolute_module_path: &ModulePath,
true_if_same: bool,
) -> bool {
// `mod_path` does not contain the root name, so we have to separately check
// that the root name is equal to the module package name.
let root_name = self.root.module.name();
let (package_name, modules) = absolute_module_path.split_first().expect("Absolute module path must have at least one element, because it always contains the package name.");
if root_name != package_name {
return false;
}
if self.mod_path.len() < modules.len() {
return false;
}
let is_submodule = modules
.iter()
.zip(self.mod_path.iter())
.all(|(left, right)| left == right);
if is_submodule {
if self.mod_path.len() == modules.len() {
true_if_same
} else {
true
}
} else {
false
}
}
/// Returns true if the module given by the `absolute_module_path` is external
/// to the current package. External modules are imported in the `Forc.toml` file.
pub(crate) fn module_is_external(&self, absolute_module_path: &ModulePath) -> bool {
let root_name = self.root.module.name();
assert!(!absolute_module_path.is_empty(), "Absolute module path must have at least one element, because it always contains the package name.");
root_name != &absolute_module_path[0]
}
/// Short-hand for calling [Root::resolve_symbol] on `root` with the `mod_path`.
pub(crate) fn resolve_symbol(
&self,
handler: &Handler,
engines: &Engines,
symbol: &Ident,
self_type: Option<TypeId>,
) -> Result<ResolvedDeclaration, ErrorEmitted> {
self.root
.resolve_symbol(handler, engines, &self.mod_path, symbol, self_type)
}
/// Short-hand for calling [Root::resolve_symbol] on `root` with the `mod_path`.
pub(crate) fn resolve_symbol_typed(
&self,
handler: &Handler,
engines: &Engines,
symbol: &Ident,
self_type: Option<TypeId>,
) -> Result<ty::TyDecl, ErrorEmitted> {
self.resolve_symbol(handler, engines, symbol, self_type)
.map(|resolved_decl| resolved_decl.expect_typed())
}
/// Short-hand for calling [Root::resolve_call_path] on `root` with the `mod_path`.
pub(crate) fn resolve_call_path_typed(
&self,
handler: &Handler,
engines: &Engines,
call_path: &CallPath,
self_type: Option<TypeId>,
) -> Result<ty::TyDecl, ErrorEmitted> {
self.resolve_call_path(handler, engines, call_path, self_type)
.map(|resolved_decl| resolved_decl.expect_typed())
}
/// Short-hand for calling [Root::resolve_call_path] on `root` with the `mod_path`.
pub(crate) fn resolve_call_path(
&self,
handler: &Handler,
engines: &Engines,
call_path: &CallPath,
self_type: Option<TypeId>,
) -> Result<ResolvedDeclaration, ErrorEmitted> {
self.root
.resolve_call_path(handler, engines, &self.mod_path, call_path, self_type)
}
/// "Enter" the submodule at the given path by returning a new [SubmoduleNamespace].
///
/// Here we temporarily change `mod_path` to the given `dep_mod_path` and wrap `self` in a
/// [SubmoduleNamespace] type. When dropped, the [SubmoduleNamespace] resets the `mod_path`
/// back to the original path so that we can continue type-checking the current module after
/// finishing with the dependency.
pub(crate) fn enter_submodule(
&mut self,
engines: &Engines,
mod_name: Ident,
visibility: Visibility,
module_span: Span,
) -> SubmoduleNamespace {
let init = self.init.clone();
let is_external = self.module(engines).is_external;
let submod_path: Vec<_> = self
.mod_path
.iter()
.cloned()
.chain(Some(mod_name.clone()))
.collect();
self.module_mut(engines)
.submodules
.entry(mod_name.to_string())
.or_insert(init.new_submodule_from_init(
mod_name,
visibility,
Some(module_span),
is_external,
submod_path.clone(),
));
let parent_mod_path = std::mem::replace(&mut self.mod_path, submod_path.clone());
SubmoduleNamespace {
namespace: self,
parent_mod_path,
}
}
/// Pushes a new submodule to the namespace's module hierarchy.
pub fn push_submodule(
&mut self,
engines: &Engines,
mod_name: Ident,
visibility: Visibility,
module_span: Span,
) {
self.module_mut(engines)
.submodules
.entry(mod_name.to_string())
.or_insert(Module::new(mod_name.clone(), visibility, Some(module_span)));
self.mod_path.push(mod_name);
}
/// Pops the current submodule from the namespace's module hierarchy.
pub fn pop_submodule(&mut self) {
self.mod_path.pop();
}
}