sway_core/semantic_analysis/namespace/root.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
use std::fmt;
use super::{module::Module, trait_map::TraitMap, Ident};
use crate::{
decl_engine::{DeclEngine, DeclRef},
engine_threading::*,
language::{
parsed::*,
ty::{self, StructDecl, TyDecl},
CallPath, Visibility,
},
namespace::{ModulePath, ModulePathBuf},
semantic_analysis::type_resolve::{resolve_associated_item, resolve_associated_type},
TypeId,
};
use sway_error::{
error::CompileError,
handler::{ErrorEmitted, Handler},
};
use sway_types::Spanned;
use sway_utils::iter_prefixes;
#[derive(Clone, Debug)]
pub enum ResolvedDeclaration {
Parsed(Declaration),
Typed(ty::TyDecl),
}
impl DisplayWithEngines for ResolvedDeclaration {
fn fmt(&self, f: &mut fmt::Formatter<'_>, engines: &Engines) -> fmt::Result {
match self {
ResolvedDeclaration::Parsed(decl) => DisplayWithEngines::fmt(decl, f, engines),
ResolvedDeclaration::Typed(decl) => DisplayWithEngines::fmt(decl, f, engines),
}
}
}
impl DebugWithEngines for ResolvedDeclaration {
fn fmt(&self, f: &mut fmt::Formatter<'_>, engines: &Engines) -> fmt::Result {
match self {
ResolvedDeclaration::Parsed(decl) => DebugWithEngines::fmt(decl, f, engines),
ResolvedDeclaration::Typed(decl) => DebugWithEngines::fmt(decl, f, engines),
}
}
}
impl PartialEqWithEngines for ResolvedDeclaration {
fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
match (self, other) {
(ResolvedDeclaration::Parsed(lhs), ResolvedDeclaration::Parsed(rhs)) => {
lhs.eq(rhs, ctx)
}
(ResolvedDeclaration::Typed(lhs), ResolvedDeclaration::Typed(rhs)) => lhs.eq(rhs, ctx),
// TODO: Right now we consider differently represented resolved declarations to not be
// equal. This is only used for comparing paths when doing imports, and we will be able
// to safely remove it once we introduce normalized paths.
(ResolvedDeclaration::Parsed(_lhs), ResolvedDeclaration::Typed(_rhs)) => false,
(ResolvedDeclaration::Typed(_lhs), ResolvedDeclaration::Parsed(_rhs)) => false,
}
}
}
impl ResolvedDeclaration {
pub fn is_typed(&self) -> bool {
match self {
ResolvedDeclaration::Parsed(_) => false,
ResolvedDeclaration::Typed(_) => true,
}
}
pub fn resolve_parsed(self, decl_engine: &DeclEngine) -> Declaration {
match self {
ResolvedDeclaration::Parsed(decl) => decl,
ResolvedDeclaration::Typed(ty_decl) => ty_decl
.get_parsed_decl(decl_engine)
.expect("expecting valid parsed declaration"),
}
}
pub fn expect_parsed(self) -> Declaration {
match self {
ResolvedDeclaration::Parsed(decl) => decl,
ResolvedDeclaration::Typed(_ty_decl) => panic!(),
}
}
pub fn expect_typed(self) -> ty::TyDecl {
match self {
ResolvedDeclaration::Parsed(_) => panic!(),
ResolvedDeclaration::Typed(ty_decl) => ty_decl,
}
}
pub fn expect_typed_ref(&self) -> &ty::TyDecl {
match self {
ResolvedDeclaration::Parsed(_) => panic!(),
ResolvedDeclaration::Typed(ty_decl) => ty_decl,
}
}
pub(crate) fn to_struct_decl(
&self,
handler: &Handler,
engines: &Engines,
) -> Result<ResolvedDeclaration, ErrorEmitted> {
match self {
ResolvedDeclaration::Parsed(decl) => decl
.to_struct_decl(handler, engines)
.map(|id| ResolvedDeclaration::Parsed(Declaration::StructDeclaration(id))),
ResolvedDeclaration::Typed(decl) => decl.to_struct_decl(handler, engines).map(|id| {
ResolvedDeclaration::Typed(TyDecl::StructDecl(StructDecl { decl_id: id }))
}),
}
}
pub(crate) fn visibility(&self, engines: &Engines) -> Visibility {
match self {
ResolvedDeclaration::Parsed(decl) => decl.visibility(engines.pe()),
ResolvedDeclaration::Typed(decl) => decl.visibility(engines.de()),
}
}
fn span(&self, engines: &Engines) -> sway_types::Span {
match self {
ResolvedDeclaration::Parsed(decl) => decl.span(engines),
ResolvedDeclaration::Typed(decl) => decl.span(engines),
}
}
pub(crate) fn return_type(
&self,
handler: &Handler,
engines: &Engines,
) -> Result<TypeId, ErrorEmitted> {
match self {
ResolvedDeclaration::Parsed(_decl) => unreachable!(),
ResolvedDeclaration::Typed(decl) => decl.return_type(handler, engines),
}
}
fn is_trait(&self) -> bool {
match self {
ResolvedDeclaration::Parsed(decl) => {
matches!(decl, Declaration::TraitDeclaration(_))
}
ResolvedDeclaration::Typed(decl) => {
matches!(decl, TyDecl::TraitDecl(_))
}
}
}
}
/// The root module, from which all other modules can be accessed.
///
/// This is equivalent to the "crate root" of a Rust crate.
///
/// We use a custom type for the `Root` in order to ensure that methods that only work with
/// canonical paths, or that use canonical paths internally, are *only* called from the root. This
/// normally includes methods that first lookup some canonical path via `use_synonyms` before using
/// that canonical path to look up the symbol declaration.
#[derive(Clone, Debug, Default)]
pub struct Root {
pub(crate) module: Module,
}
impl Root {
////// IMPORT //////
/// Given a path to a `src` module, create synonyms to every symbol in that module to the given
/// `dst` module.
///
/// This is used when an import path contains an asterisk.
///
/// Paths are assumed to be absolute.
pub fn star_import(
&mut self,
handler: &Handler,
engines: &Engines,
src: &ModulePath,
dst: &ModulePath,
visibility: Visibility,
) -> Result<(), ErrorEmitted> {
self.check_module_privacy(handler, engines, src, dst)?;
let src_mod = self.module.lookup_submodule(handler, engines, src)?;
let mut decls_and_item_imports = vec![];
let get_path = |mod_path: Vec<Ident>| {
let mut is_external = false;
if let Some(submodule) = src_mod.submodule(engines, &[mod_path[0].clone()]) {
is_external = submodule.is_external
};
let mut path = src[..1].to_vec();
if is_external {
path = mod_path;
} else {
path.extend(mod_path);
}
path
};
// Collect all items declared in the source module
for (symbol, decl) in src_mod.current_items().symbols.iter() {
if is_ancestor(src, dst) || decl.visibility(engines).is_public() {
decls_and_item_imports.push((symbol.clone(), decl.clone(), src.to_vec()));
}
}
// Collect those item-imported items that the source module reexports
// These live in the same namespace as local declarations, so no shadowing is possible
for (symbol, (_, path, decl, src_visibility)) in
src_mod.current_items().use_item_synonyms.iter()
{
if src_visibility.is_public() {
decls_and_item_imports.push((symbol.clone(), decl.clone(), get_path(path.clone())))
}
}
// Collect those glob-imported items that the source module reexports. These may be shadowed
// by local declarations and item imports in the source module, so they are treated
// separately.
let mut glob_imports = vec![];
for (symbol, bindings) in src_mod.current_items().use_glob_synonyms.iter() {
// Ignore if the symbol is shadowed by a local declaration or an item import in the source module
if !decls_and_item_imports
.iter()
.any(|(other_symbol, _, _)| symbol == other_symbol)
{
for (path, decl, src_visibility) in bindings.iter() {
if src_visibility.is_public() {
glob_imports.push((symbol.clone(), decl.clone(), get_path(path.clone())))
}
}
}
}
let implemented_traits = src_mod.current_items().implemented_traits.clone();
let dst_mod = self.module.lookup_submodule_mut(handler, engines, dst)?;
dst_mod
.current_items_mut()
.implemented_traits
.extend(implemented_traits, engines);
decls_and_item_imports
.iter()
.chain(glob_imports.iter())
.for_each(|(symbol, decl, path)| {
dst_mod.current_items_mut().insert_glob_use_symbol(
engines,
symbol.clone(),
path.clone(),
decl,
visibility,
)
});
Ok(())
}
/// Pull a single item from a `src` module and import it into the `dst` module.
///
/// The item we want to import is basically the last item in path because this is a `self`
/// import.
pub(crate) fn self_import(
&mut self,
handler: &Handler,
engines: &Engines,
src: &ModulePath,
dst: &ModulePath,
alias: Option<Ident>,
visibility: Visibility,
) -> Result<(), ErrorEmitted> {
let (last_item, src) = src.split_last().expect("guaranteed by grammar");
self.item_import(handler, engines, src, last_item, dst, alias, visibility)
}
fn item_lookup(
&self,
handler: &Handler,
engines: &Engines,
item: &Ident,
src: &ModulePath,
dst: &ModulePath,
) -> Result<(ResolvedDeclaration, ModulePathBuf), ErrorEmitted> {
let src_mod = self.module.lookup_submodule(handler, engines, src)?;
let src_items = src_mod.current_items();
let (decl, path, src_visibility) = if let Some(decl) = src_items.symbols.get(item) {
let visibility = if is_ancestor(src, dst) {
Visibility::Public
} else {
decl.visibility(engines)
};
(decl.clone(), src.to_vec(), visibility)
} else if let Some((_, path, decl, reexport)) = src_items.use_item_synonyms.get(item) {
(decl.clone(), path.clone(), *reexport)
} else if let Some(decls) = src_items.use_glob_synonyms.get(item) {
if decls.len() == 1 {
let (path, decl, reexport) = &decls[0];
(decl.clone(), path.clone(), *reexport)
} else if decls.is_empty() {
return Err(handler.emit_err(CompileError::Internal(
"The name {symbol} was bound in a star import, but no corresponding module paths were found",
item.span(),
)));
} else {
return Err(handler.emit_err(CompileError::SymbolWithMultipleBindings {
name: item.clone(),
paths: decls
.iter()
.map(|(path, decl, _)| {
let mut path_strs = path.iter().map(|x| x.as_str()).collect::<Vec<_>>();
// Add the enum name to the path if the decl is an enum variant.
if let TyDecl::EnumVariantDecl(ty::EnumVariantDecl {
enum_ref, ..
}) = decl.expect_typed_ref()
{
path_strs.push(enum_ref.name().as_str())
};
path_strs.join("::")
})
.collect(),
span: item.span(),
}));
}
} else {
// Symbol not found
return Err(handler.emit_err(CompileError::SymbolNotFound {
name: item.clone(),
span: item.span(),
}));
};
if !src_visibility.is_public() {
handler.emit_err(CompileError::ImportPrivateSymbol {
name: item.clone(),
span: item.span(),
});
}
Ok((decl, path))
}
/// Pull a single `item` from the given `src` module and import it into the `dst` module.
///
/// Paths are assumed to be absolute.
#[allow(clippy::too_many_arguments)]
pub(crate) fn item_import(
&mut self,
handler: &Handler,
engines: &Engines,
src: &ModulePath,
item: &Ident,
dst: &ModulePath,
alias: Option<Ident>,
visibility: Visibility,
) -> Result<(), ErrorEmitted> {
self.check_module_privacy(handler, engines, src, dst)?;
let src_mod = self.module.lookup_submodule(handler, engines, src)?;
let (decl, path) = self.item_lookup(handler, engines, item, src, dst)?;
let mut impls_to_insert = TraitMap::default();
if decl.is_typed() {
// We only handle trait imports when handling typed declarations,
// that is, when performing type-checking, and not when collecting.
// Update this once the type system is updated to refer to parsed
// declarations.
// if this is an enum or struct or function, import its implementations
if let Ok(type_id) = decl.return_type(&Handler::default(), engines) {
impls_to_insert.extend(
src_mod
.current_items()
.implemented_traits
.filter_by_type_item_import(
type_id,
engines,
super::CodeBlockFirstPass::No,
),
engines,
);
}
// if this is a trait, import its implementations
let decl_span = decl.span(engines);
if decl.is_trait() {
// TODO: we only import local impls from the source namespace
// this is okay for now but we'll need to device some mechanism to collect all available trait impls
impls_to_insert.extend(
src_mod
.current_items()
.implemented_traits
.filter_by_trait_decl_span(decl_span),
engines,
);
}
}
// no matter what, import it this way though.
let dst_mod = self.module.lookup_submodule_mut(handler, engines, dst)?;
let check_name_clash = |name| {
if dst_mod.current_items().use_item_synonyms.contains_key(name) {
handler.emit_err(CompileError::ShadowsOtherSymbol { name: name.into() });
}
};
match alias {
Some(alias) => {
check_name_clash(&alias);
dst_mod
.current_items_mut()
.use_item_synonyms
.insert(alias.clone(), (Some(item.clone()), path, decl, visibility))
}
None => {
check_name_clash(item);
dst_mod
.current_items_mut()
.use_item_synonyms
.insert(item.clone(), (None, path, decl, visibility))
}
};
dst_mod
.current_items_mut()
.implemented_traits
.extend(impls_to_insert, engines);
Ok(())
}
/// Pull a single variant `variant` from the enum `enum_name` from the given `src` module and import it into the `dst` module.
///
/// Paths are assumed to be absolute.
#[allow(clippy::too_many_arguments)] // TODO: remove lint bypass once private modules are no longer experimental
pub(crate) fn variant_import(
&mut self,
handler: &Handler,
engines: &Engines,
src: &ModulePath,
enum_name: &Ident,
variant_name: &Ident,
dst: &ModulePath,
alias: Option<Ident>,
visibility: Visibility,
) -> Result<(), ErrorEmitted> {
self.check_module_privacy(handler, engines, src, dst)?;
let decl_engine = engines.de();
let parsed_decl_engine = engines.pe();
let (decl, path) = self.item_lookup(handler, engines, enum_name, src, dst)?;
match decl {
ResolvedDeclaration::Parsed(decl) => {
if let Declaration::EnumDeclaration(decl_id) = decl {
let enum_decl = parsed_decl_engine.get_enum(&decl_id);
if let Some(variant_decl) =
enum_decl.variants.iter().find(|v| v.name == *variant_name)
{
// import it this way.
let dst_mod = self.module.lookup_submodule_mut(handler, engines, dst)?;
let check_name_clash = |name| {
if dst_mod.current_items().use_item_synonyms.contains_key(name) {
handler.emit_err(CompileError::ShadowsOtherSymbol {
name: name.into(),
});
}
};
match alias {
Some(alias) => {
check_name_clash(&alias);
dst_mod.current_items_mut().use_item_synonyms.insert(
alias.clone(),
(
Some(variant_name.clone()),
path,
ResolvedDeclaration::Parsed(
Declaration::EnumVariantDeclaration(
EnumVariantDeclaration {
enum_ref: decl_id,
variant_name: variant_name.clone(),
variant_decl_span: variant_decl.span.clone(),
},
),
),
visibility,
),
);
}
None => {
check_name_clash(variant_name);
dst_mod.current_items_mut().use_item_synonyms.insert(
variant_name.clone(),
(
None,
path,
ResolvedDeclaration::Parsed(
Declaration::EnumVariantDeclaration(
EnumVariantDeclaration {
enum_ref: decl_id,
variant_name: variant_name.clone(),
variant_decl_span: variant_decl.span.clone(),
},
),
),
visibility,
),
);
}
};
} else {
return Err(handler.emit_err(CompileError::SymbolNotFound {
name: variant_name.clone(),
span: variant_name.span(),
}));
}
}
}
ResolvedDeclaration::Typed(decl) => {
if let TyDecl::EnumDecl(ty::EnumDecl { decl_id, .. }) = decl {
let enum_decl = decl_engine.get_enum(&decl_id);
let enum_ref = DeclRef::new(
enum_decl.call_path.suffix.clone(),
decl_id,
enum_decl.span(),
);
if let Some(variant_decl) =
enum_decl.variants.iter().find(|v| v.name == *variant_name)
{
// import it this way.
let dst_mod = self.module.lookup_submodule_mut(handler, engines, dst)?;
let check_name_clash = |name| {
if dst_mod.current_items().use_item_synonyms.contains_key(name) {
handler.emit_err(CompileError::ShadowsOtherSymbol {
name: name.into(),
});
}
};
match alias {
Some(alias) => {
check_name_clash(&alias);
dst_mod.current_items_mut().use_item_synonyms.insert(
alias.clone(),
(
Some(variant_name.clone()),
path,
ResolvedDeclaration::Typed(TyDecl::EnumVariantDecl(
ty::EnumVariantDecl {
enum_ref: enum_ref.clone(),
variant_name: variant_name.clone(),
variant_decl_span: variant_decl.span.clone(),
},
)),
visibility,
),
);
}
None => {
check_name_clash(variant_name);
dst_mod.current_items_mut().use_item_synonyms.insert(
variant_name.clone(),
(
None,
path,
ResolvedDeclaration::Typed(TyDecl::EnumVariantDecl(
ty::EnumVariantDecl {
enum_ref: enum_ref.clone(),
variant_name: variant_name.clone(),
variant_decl_span: variant_decl.span.clone(),
},
)),
visibility,
),
);
}
};
} else {
return Err(handler.emit_err(CompileError::SymbolNotFound {
name: variant_name.clone(),
span: variant_name.span(),
}));
}
} else {
return Err(handler.emit_err(CompileError::Internal(
"Attempting to import variants of something that isn't an enum",
enum_name.span(),
)));
}
}
};
Ok(())
}
/// Pull all variants from the enum `enum_name` from the given `src` module and import them all into the `dst` module.
///
/// Paths are assumed to be absolute.
pub(crate) fn variant_star_import(
&mut self,
handler: &Handler,
engines: &Engines,
src: &ModulePath,
dst: &ModulePath,
enum_name: &Ident,
visibility: Visibility,
) -> Result<(), ErrorEmitted> {
self.check_module_privacy(handler, engines, src, dst)?;
let parsed_decl_engine = engines.pe();
let decl_engine = engines.de();
let (decl, path) = self.item_lookup(handler, engines, enum_name, src, dst)?;
match decl {
ResolvedDeclaration::Parsed(Declaration::EnumDeclaration(decl_id)) => {
let enum_decl = parsed_decl_engine.get_enum(&decl_id);
for variant in enum_decl.variants.iter() {
let variant_name = &variant.name;
let variant_decl =
Declaration::EnumVariantDeclaration(EnumVariantDeclaration {
enum_ref: decl_id,
variant_name: variant_name.clone(),
variant_decl_span: variant.span.clone(),
});
// import it this way.
self.module
.lookup_submodule_mut(handler, engines, dst)?
.current_items_mut()
.insert_glob_use_symbol(
engines,
variant_name.clone(),
path.clone(),
&ResolvedDeclaration::Parsed(variant_decl),
visibility,
);
}
}
ResolvedDeclaration::Typed(TyDecl::EnumDecl(ty::EnumDecl { decl_id, .. })) => {
let enum_decl = decl_engine.get_enum(&decl_id);
let enum_ref = DeclRef::new(
enum_decl.call_path.suffix.clone(),
decl_id,
enum_decl.span(),
);
for variant_decl in enum_decl.variants.iter() {
let variant_name = &variant_decl.name;
let decl =
ResolvedDeclaration::Typed(TyDecl::EnumVariantDecl(ty::EnumVariantDecl {
enum_ref: enum_ref.clone(),
variant_name: variant_name.clone(),
variant_decl_span: variant_decl.span.clone(),
}));
// import it this way.
self.module
.lookup_submodule_mut(handler, engines, dst)?
.current_items_mut()
.insert_glob_use_symbol(
engines,
variant_name.clone(),
path.clone(),
&decl,
visibility,
);
}
}
_ => {
return Err(handler.emit_err(CompileError::Internal(
"Attempting to import variants of something that isn't an enum",
enum_name.span(),
)));
}
};
Ok(())
}
/// Check that all accessed modules in the src path are visible from the dst path.
/// If src and dst have a common ancestor module that is private, this privacy modifier is
/// ignored for visibility purposes, since src and dst are both behind that private visibility
/// modifier. Additionally, items in a private module are visible to its immediate parent.
fn check_module_privacy(
&self,
handler: &Handler,
engines: &Engines,
src: &ModulePath,
dst: &ModulePath,
) -> Result<(), ErrorEmitted> {
// Calculate the number of src prefixes whose privacy is ignored.
let mut ignored_prefixes = 0;
// Ignore visibility of common ancestors
ignored_prefixes += src
.iter()
.zip(dst)
.position(|(src_id, dst_id)| src_id != dst_id)
.unwrap_or(dst.len());
// Ignore visibility of direct submodules of the destination module
if dst.len() == ignored_prefixes {
ignored_prefixes += 1;
}
// Check visibility of remaining submodules in the source path
for prefix in iter_prefixes(src).skip(ignored_prefixes) {
let module = self.module.lookup_submodule(handler, engines, prefix)?;
if module.visibility().is_private() {
let prefix_last = prefix[prefix.len() - 1].clone();
handler.emit_err(CompileError::ImportPrivateModule {
span: prefix_last.span(),
name: prefix_last,
});
}
}
Ok(())
}
////// NAME RESOLUTION //////
/// Resolve a symbol that is potentially prefixed with some path, e.g. `foo::bar::symbol`.
///
/// This is short-hand for concatenating the `mod_path` with the `call_path`'s prefixes and
/// then calling `resolve_symbol` with the resulting path and call_path's suffix.
pub(crate) fn resolve_call_path(
&self,
handler: &Handler,
engines: &Engines,
mod_path: &ModulePath,
call_path: &CallPath,
self_type: Option<TypeId>,
) -> Result<ResolvedDeclaration, ErrorEmitted> {
let (decl, _) =
self.resolve_call_path_and_mod_path(handler, engines, mod_path, call_path, self_type)?;
Ok(decl)
}
pub(crate) fn resolve_call_path_and_mod_path(
&self,
handler: &Handler,
engines: &Engines,
mod_path: &ModulePath,
call_path: &CallPath,
self_type: Option<TypeId>,
) -> Result<(ResolvedDeclaration, ModulePathBuf), ErrorEmitted> {
let symbol_path: Vec<_> = mod_path
.iter()
.chain(&call_path.prefixes)
.cloned()
.collect();
self.resolve_symbol_and_mod_path(
handler,
engines,
&symbol_path,
&call_path.suffix,
self_type,
)
}
/// Given a path to a module and the identifier of a symbol within that module, resolve its
/// declaration.
///
/// If the symbol is within the given module's namespace via import, we recursively traverse
/// imports until we find the original declaration.
pub(crate) fn resolve_symbol(
&self,
handler: &Handler,
engines: &Engines,
mod_path: &ModulePath,
symbol: &Ident,
self_type: Option<TypeId>,
) -> Result<ResolvedDeclaration, ErrorEmitted> {
let (decl, _) =
self.resolve_symbol_and_mod_path(handler, engines, mod_path, symbol, self_type)?;
Ok(decl)
}
fn resolve_symbol_and_mod_path(
&self,
handler: &Handler,
engines: &Engines,
mod_path: &ModulePath,
symbol: &Ident,
self_type: Option<TypeId>,
) -> Result<(ResolvedDeclaration, Vec<Ident>), ErrorEmitted> {
// This block tries to resolve associated types
let mut module = &self.module;
let mut current_mod_path = vec![];
let mut decl_opt = None;
for ident in mod_path.iter() {
if let Some(decl) = decl_opt {
decl_opt = Some(resolve_associated_type(
handler, engines, module, ident, decl, None, self_type,
)?);
} else {
match module.submodules.get(ident.as_str()) {
Some(ns) => {
module = ns;
current_mod_path.push(ident.clone());
}
None => {
decl_opt = Some(
module
.current_lexical_scope()
.items
.resolve_symbol(handler, engines, ident)?,
);
}
}
}
}
if let Some(decl) = decl_opt {
let decl =
resolve_associated_item(handler, engines, module, symbol, decl, None, self_type)?;
return Ok((decl, current_mod_path));
}
self.module
.lookup_submodule(handler, engines, mod_path)
.and_then(|module| {
let decl = module
.current_lexical_scope()
.items
.resolve_symbol(handler, engines, symbol)?;
Ok((decl, mod_path.to_vec()))
})
}
}
impl From<Module> for Root {
fn from(module: Module) -> Self {
Root { module }
}
}
fn is_ancestor(src: &ModulePath, dst: &ModulePath) -> bool {
dst.len() >= src.len() && src.iter().zip(dst).all(|(src, dst)| src == dst)
}