sway_core/semantic_analysis/symbol_resolve_context.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
use crate::{
engine_threading::*,
language::{CallPath, Visibility},
namespace::{ModulePath, ResolvedDeclaration},
semantic_analysis::{ast_node::ConstShadowingMode, Namespace},
type_system::TypeId,
};
use sway_error::{
error::CompileError,
handler::{ErrorEmitted, Handler},
};
use sway_types::{span::Span, Ident, Spanned};
use sway_utils::iter_prefixes;
use super::{symbol_collection_context::SymbolCollectionContext, GenericShadowingMode};
/// Contextual state tracked and accumulated throughout symbol resolving.
pub struct SymbolResolveContext<'a> {
/// The namespace context accumulated throughout symbol resolving.
///
/// Internally, this includes:
///
/// - The `root` module from which all other modules maybe be accessed using absolute paths.
/// - The `init` module used to initialize submodule namespaces.
/// - A `mod_path` that represents the current module being type-checked. This is automatically
/// updated upon entering/exiting submodules via the `enter_submodule` method.
pub(crate) engines: &'a Engines,
pub(crate) symbol_collection_ctx: &'a mut SymbolCollectionContext,
// The following set of fields are intentionally private. When a `SymbolResolveContext` is passed
// into a new node during symbol resolving, these fields should be updated using the `with_*`
// methods which provides a new `SymbolResolveContext`, ensuring we don't leak our changes into
// the parent nodes.
/// While symbol resolving an `impl` (whether inherent or for a `trait`/`abi`) this represents the
/// type for which we are implementing. For example in `impl Foo {}` or `impl Trait for Foo
/// {}`, this represents the type ID of `Foo`.
self_type: Option<TypeId>,
/// Whether or not a const declaration shadows previous const declarations sequentially.
///
/// This is `Sequential` while checking const declarations in functions, otherwise `ItemStyle`.
const_shadowing_mode: ConstShadowingMode,
/// Whether or not a generic type parameters shadows previous generic type parameters.
///
/// This is `Disallow` everywhere except while checking type parameters bounds in struct instantiation.
generic_shadowing_mode: GenericShadowingMode,
}
impl<'a> SymbolResolveContext<'a> {
/// Initialize a symbol resolving context with a namespace.
pub fn new(
engines: &'a Engines,
symbol_collection_ctx: &'a mut SymbolCollectionContext,
) -> Self {
Self {
engines,
symbol_collection_ctx,
self_type: None,
const_shadowing_mode: ConstShadowingMode::ItemStyle,
generic_shadowing_mode: GenericShadowingMode::Disallow,
}
}
/// Create a new context that mutably borrows the inner `namespace` with a lifetime bound by
/// `self`.
///
/// This is particularly useful when symbol resolving a node that has more than one child node
/// (very often the case). By taking the context with the namespace lifetime bound to `self`
/// rather than the original namespace reference, we instead restrict the returned context to
/// the local scope and avoid consuming the original context when providing context to the
/// first visited child node.
pub fn by_ref(&mut self) -> SymbolResolveContext<'_> {
SymbolResolveContext {
engines: self.engines,
symbol_collection_ctx: self.symbol_collection_ctx,
self_type: self.self_type,
const_shadowing_mode: self.const_shadowing_mode,
generic_shadowing_mode: self.generic_shadowing_mode,
}
}
/// Scope the `SymbolResolveContext` with a new namespace lexical scope.
pub fn enter_lexical_scope<T>(
self,
handler: &Handler,
span: Span,
with_scoped_ctx: impl FnOnce(SymbolResolveContext) -> Result<T, ErrorEmitted>,
) -> Result<T, ErrorEmitted> {
let engines = self.engines;
self.symbol_collection_ctx.enter_lexical_scope(
handler,
engines,
span,
|sub_scope_collect_ctx| {
let sub_scope_resolve_ctx =
SymbolResolveContext::new(engines, sub_scope_collect_ctx);
with_scoped_ctx(sub_scope_resolve_ctx)
},
)
}
/// Enter the submodule with the given name and a symbol resolve context ready for
/// symbol resolving its content.
///
/// Returns the result of the given `with_submod_ctx` function.
pub fn enter_submodule<T>(
self,
mod_name: Ident,
visibility: Visibility,
module_span: Span,
with_submod_ctx: impl FnOnce(SymbolResolveContext) -> T,
) -> T {
let engines = self.engines;
self.symbol_collection_ctx.enter_submodule(
engines,
mod_name,
visibility,
module_span,
|submod_collect_ctx| {
let submod_ctx = SymbolResolveContext::new(engines, submod_collect_ctx);
with_submod_ctx(submod_ctx)
},
)
}
/// Returns a mutable reference to the current namespace.
pub fn namespace_mut(&mut self) -> &mut Namespace {
&mut self.symbol_collection_ctx.namespace
}
/// Returns a reference to the current namespace.
pub fn namespace(&self) -> &Namespace {
&self.symbol_collection_ctx.namespace
}
/// Map this `SymbolResolveContext` instance to a new one with the given const shadowing `mode`.
#[allow(unused)]
pub(crate) fn with_const_shadowing_mode(
self,
const_shadowing_mode: ConstShadowingMode,
) -> Self {
Self {
const_shadowing_mode,
..self
}
}
/// Map this `SymbolResolveContext` instance to a new one with the given generic shadowing `mode`.
#[allow(unused)]
pub(crate) fn with_generic_shadowing_mode(
self,
generic_shadowing_mode: GenericShadowingMode,
) -> Self {
Self {
generic_shadowing_mode,
..self
}
}
// A set of accessor methods. We do this rather than making the fields `pub` in order to ensure
// that these are only updated via the `with_*` methods that produce a new `SymbolResolveContext`.
#[allow(unused)]
pub(crate) fn self_type(&self) -> Option<TypeId> {
self.self_type
}
#[allow(unused)]
pub(crate) fn const_shadowing_mode(&self) -> ConstShadowingMode {
self.const_shadowing_mode
}
#[allow(unused)]
pub(crate) fn generic_shadowing_mode(&self) -> GenericShadowingMode {
self.generic_shadowing_mode
}
/// Get the engines needed for engine threading.
pub(crate) fn engines(&self) -> &'a Engines {
self.engines
}
/// Short-hand for calling [Root::resolve_call_path_with_visibility_check] on `root` with the `mod_path`.
pub(crate) fn resolve_call_path_with_visibility_check(
&self,
handler: &Handler,
call_path: &CallPath,
) -> Result<ResolvedDeclaration, ErrorEmitted> {
self.resolve_call_path_with_visibility_check_and_modpath(
handler,
&self.namespace().mod_path,
call_path,
)
}
/// Resolve a symbol that is potentially prefixed with some path, e.g. `foo::bar::symbol`.
///
/// This will concatenate the `mod_path` with the `call_path`'s prefixes and
/// then calling `resolve_symbol` with the resulting path and call_path's suffix.
///
/// The `mod_path` is significant here as we assume the resolution is done within the
/// context of the module pointed to by `mod_path` and will only check the call path prefixes
/// and the symbol's own visibility.
pub(crate) fn resolve_call_path_with_visibility_check_and_modpath(
&self,
handler: &Handler,
mod_path: &ModulePath,
call_path: &CallPath,
) -> Result<ResolvedDeclaration, ErrorEmitted> {
let (decl, mod_path) = self.namespace().root.resolve_call_path_and_mod_path(
handler,
self.engines,
mod_path,
call_path,
self.self_type,
)?;
// In case there is no mod path we don't need to check visibility
if mod_path.is_empty() {
return Ok(decl);
}
// In case there are no prefixes we don't need to check visibility
if call_path.prefixes.is_empty() {
return Ok(decl);
}
// check the visibility of the call path elements
// we don't check the first prefix because direct children are always accessible
for prefix in iter_prefixes(&call_path.prefixes).skip(1) {
let module = self.namespace().lookup_submodule_from_absolute_path(
handler,
self.engines(),
prefix,
)?;
if module.visibility().is_private() {
let prefix_last = prefix[prefix.len() - 1].clone();
handler.emit_err(CompileError::ImportPrivateModule {
span: prefix_last.span(),
name: prefix_last,
});
}
}
// check the visibility of the symbol itself
if !decl.visibility(self.engines).is_public() {
handler.emit_err(CompileError::ImportPrivateSymbol {
name: call_path.suffix.clone(),
span: call_path.suffix.span(),
});
}
Ok(decl)
}
}