sway_core/language/
call_path.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
use crate::{
    engine_threading::{
        DebugWithEngines, DisplayWithEngines, EqWithEngines, HashWithEngines, OrdWithEngines,
        OrdWithEnginesContext, PartialEqWithEngines, PartialEqWithEnginesContext,
    },
    parsed::QualifiedPathType,
    Engines, Ident, Namespace,
};
use serde::{Deserialize, Serialize};
use std::{
    cmp::Ordering,
    fmt,
    hash::{Hash, Hasher},
    sync::Arc,
};
use sway_error::{
    error::CompileError,
    handler::{ErrorEmitted, Handler},
};
use sway_types::{span::Span, Spanned};

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct CallPathTree {
    pub qualified_call_path: QualifiedCallPath,
    pub children: Vec<CallPathTree>,
}

impl HashWithEngines for CallPathTree {
    fn hash<H: Hasher>(&self, state: &mut H, engines: &Engines) {
        let CallPathTree {
            qualified_call_path,
            children,
        } = self;
        qualified_call_path.hash(state, engines);
        children.hash(state, engines);
    }
}

impl EqWithEngines for CallPathTree {}
impl PartialEqWithEngines for CallPathTree {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        let CallPathTree {
            qualified_call_path,
            children,
        } = self;
        qualified_call_path.eq(&other.qualified_call_path, ctx) && children.eq(&other.children, ctx)
    }
}

impl<T: PartialEqWithEngines> EqWithEngines for Vec<T> {}
impl<T: PartialEqWithEngines> PartialEqWithEngines for Vec<T> {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        if self.len() != other.len() {
            return false;
        }
        self.iter().zip(other.iter()).all(|(a, b)| a.eq(b, ctx))
    }
}

impl OrdWithEngines for CallPathTree {
    fn cmp(&self, other: &Self, ctx: &OrdWithEnginesContext) -> Ordering {
        let CallPathTree {
            qualified_call_path: l_call_path,
            children: l_children,
        } = self;
        let CallPathTree {
            qualified_call_path: r_call_path,
            children: r_children,
        } = other;
        l_call_path
            .cmp(r_call_path, ctx)
            .then_with(|| l_children.cmp(r_children, ctx))
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]

pub struct QualifiedCallPath {
    pub call_path: CallPath,
    pub qualified_path_root: Option<Box<QualifiedPathType>>,
}

impl std::convert::From<Ident> for QualifiedCallPath {
    fn from(other: Ident) -> Self {
        QualifiedCallPath {
            call_path: CallPath {
                prefixes: vec![],
                suffix: other,
                callpath_type: CallPathType::Ambiguous,
            },
            qualified_path_root: None,
        }
    }
}

impl std::convert::From<CallPath> for QualifiedCallPath {
    fn from(other: CallPath) -> Self {
        QualifiedCallPath {
            call_path: other,
            qualified_path_root: None,
        }
    }
}

impl QualifiedCallPath {
    pub fn to_call_path(self, handler: &Handler) -> Result<CallPath, ErrorEmitted> {
        if let Some(qualified_path_root) = self.qualified_path_root {
            Err(handler.emit_err(CompileError::Internal(
                "Unexpected qualified path.",
                qualified_path_root.as_trait_span,
            )))
        } else {
            Ok(self.call_path)
        }
    }
}

impl HashWithEngines for QualifiedCallPath {
    fn hash<H: Hasher>(&self, state: &mut H, engines: &Engines) {
        let QualifiedCallPath {
            call_path,
            qualified_path_root,
        } = self;
        call_path.hash(state);
        qualified_path_root.hash(state, engines);
    }
}

impl EqWithEngines for QualifiedCallPath {}
impl PartialEqWithEngines for QualifiedCallPath {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        let QualifiedCallPath {
            call_path,
            qualified_path_root,
        } = self;
        PartialEqWithEngines::eq(call_path, &other.call_path, ctx)
            && qualified_path_root.eq(&other.qualified_path_root, ctx)
    }
}

impl OrdWithEngines for QualifiedCallPath {
    fn cmp(&self, other: &Self, ctx: &OrdWithEnginesContext) -> Ordering {
        let QualifiedCallPath {
            call_path: l_call_path,
            qualified_path_root: l_qualified_path_root,
        } = self;
        let QualifiedCallPath {
            call_path: r_call_path,
            qualified_path_root: r_qualified_path_root,
        } = other;
        l_call_path
            .cmp(r_call_path)
            .then_with(|| l_qualified_path_root.cmp(r_qualified_path_root, ctx))
    }
}

impl DisplayWithEngines for QualifiedCallPath {
    fn fmt(&self, f: &mut fmt::Formatter<'_>, engines: &Engines) -> fmt::Result {
        if let Some(qualified_path_root) = &self.qualified_path_root {
            write!(
                f,
                "{}::{}",
                engines.help_out(qualified_path_root),
                &self.call_path
            )
        } else {
            write!(f, "{}", &self.call_path)
        }
    }
}

impl DebugWithEngines for QualifiedCallPath {
    fn fmt(&self, f: &mut fmt::Formatter<'_>, engines: &Engines) -> fmt::Result {
        write!(f, "{}", engines.help_out(self))
    }
}

#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash, Ord, PartialOrd, Serialize, Deserialize)]
pub enum CallPathType {
    /// An unresolved path on the form `::X::Y::Z`. The path must be resolved relative to the
    /// current package root module.
    /// The path can be converted to a full path by prepending the package name, so if the path
    /// `::X::Y::Z` occurs in package `A`, then the corresponding full path will be `A::X::Y::Z`.
    RelativeToPackageRoot,
    /// An unresolved path on the form `X::Y::Z`. The path must either be resolved relative to the
    /// current module, in which case `X` is either a submodule or a name bound in the current
    /// module, or as a full path, in which case `X` is the name of an external package.
    /// If the path is resolved relative to the current module, and the current module has a module
    /// path `A::B::C`, then the corresponding full path is `A::B::C::X::Y::Z`.
    /// If the path is resolved as a full path, then the full path is `X::Y::Z`.
    Ambiguous,
    /// A full path on the form `X::Y::Z`. The first identifier `X` is the name of either the
    /// current package or an external package.
    /// After that comes a (possibly empty) series of names of submodules. Then comes the name of an
    /// item (a type, a trait, a function, or something else declared in that module). Additionally,
    /// there may be additional names such as the name of an enum variant or associated types.
    Full,
}

/// In the expression `a::b::c()`, `a` and `b` are the prefixes and `c` is the suffix.
/// `c` can be any type `T`, but in practice `c` is either an `Ident` or a `TypeInfo`.
#[derive(Debug, Clone, Eq, PartialEq, Hash, Ord, PartialOrd, Serialize, Deserialize)]
pub struct CallPath<T = Ident> {
    pub prefixes: Vec<Ident>,
    pub suffix: T,
    pub callpath_type: CallPathType,
}

impl EqWithEngines for CallPath {}
impl PartialEqWithEngines for CallPath {
    fn eq(&self, other: &Self, _ctx: &PartialEqWithEnginesContext) -> bool {
        self.prefixes == other.prefixes
            && self.suffix == other.suffix
            && self.callpath_type == other.callpath_type
    }
}

impl<T: EqWithEngines> EqWithEngines for CallPath<T> {}
impl<T: PartialEqWithEngines> PartialEqWithEngines for CallPath<T> {
    fn eq(&self, other: &Self, ctx: &PartialEqWithEnginesContext) -> bool {
        self.prefixes == other.prefixes
            && self.suffix.eq(&other.suffix, ctx)
            && self.callpath_type == other.callpath_type
    }
}

impl<T: OrdWithEngines> OrdWithEngines for CallPath<T> {
    fn cmp(&self, other: &Self, ctx: &OrdWithEnginesContext) -> Ordering {
        self.prefixes
            .cmp(&other.prefixes)
            .then_with(|| self.suffix.cmp(&other.suffix, ctx))
            .then_with(|| self.callpath_type.cmp(&other.callpath_type))
    }
}

#[derive(Debug, Clone, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct ResolvedCallPath<T, U = Ident> {
    pub decl: T,
    pub unresolved_call_path: CallPath<U>,
}

impl std::convert::From<Ident> for CallPath {
    fn from(other: Ident) -> Self {
        CallPath {
            prefixes: vec![],
            suffix: other,
            callpath_type: CallPathType::Ambiguous,
        }
    }
}

impl<T> fmt::Display for CallPath<T>
where
    T: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for prefix in self.prefixes.iter() {
            write!(f, "{}::", prefix.as_str())?;
        }
        write!(f, "{}", &self.suffix)
    }
}

impl<T: DisplayWithEngines> DisplayWithEngines for CallPath<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>, engines: &Engines) -> fmt::Result {
        for prefix in self.prefixes.iter() {
            write!(f, "{}::", prefix.as_str())?;
        }
        write!(f, "{}", engines.help_out(&self.suffix))
    }
}

impl<T: DisplayWithEngines> DebugWithEngines for CallPath<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>, engines: &Engines) -> fmt::Result {
        for prefix in self.prefixes.iter() {
            write!(f, "{}::", prefix.as_str())?;
        }
        write!(f, "{}", engines.help_out(&self.suffix))
    }
}

impl<T: Spanned> Spanned for CallPath<T> {
    fn span(&self) -> Span {
        if self.prefixes.is_empty() {
            self.suffix.span()
        } else {
            let mut prefixes_spans = self
                .prefixes
                .iter()
                .map(|x| x.span())
                //LOC below should be removed when #21 goes in
                .filter(|x| {
                    Arc::ptr_eq(x.src(), self.suffix.span().src())
                        && x.source_id() == self.suffix.span().source_id()
                })
                .peekable();
            if prefixes_spans.peek().is_some() {
                Span::join(Span::join_all(prefixes_spans), &self.suffix.span())
            } else {
                self.suffix.span()
            }
        }
    }
}

impl CallPath {
    pub fn fullpath(path: &[&str]) -> Self {
        assert!(!path.is_empty());

        CallPath {
            prefixes: path
                .iter()
                .take(path.len() - 1)
                .map(|&x| Ident::new_no_span(x.into()))
                .collect(),
            suffix: path.last().map(|&x| Ident::new_no_span(x.into())).unwrap(),
            callpath_type: CallPathType::Full,
        }
    }

    /// Shifts the last prefix into the suffix, and removes the old suffix.
    /// Does nothing if prefixes are empty, or if the path is a full path and there is only a single prefix (which must be the package name, which is obligatory for full paths)
    pub fn rshift(&self) -> CallPath {
        if self.prefixes.is_empty()
            || (matches!(self.callpath_type, CallPathType::Full) && self.prefixes.len() == 1)
        {
            self.clone()
        } else {
            CallPath {
                prefixes: self.prefixes[0..self.prefixes.len() - 1].to_vec(),
                suffix: self.prefixes.last().unwrap().clone(),
                callpath_type: self.callpath_type,
            }
        }
    }

    /// Removes the first prefix. Does nothing if prefixes are empty.
    pub fn lshift(&self) -> CallPath {
        if self.prefixes.is_empty() {
            self.clone()
        } else {
            let new_callpath_type = match self.callpath_type {
                CallPathType::RelativeToPackageRoot | CallPathType::Ambiguous => {
                    CallPathType::Ambiguous
                }
                CallPathType::Full => CallPathType::RelativeToPackageRoot,
            };
            CallPath {
                prefixes: self.prefixes[1..self.prefixes.len()].to_vec(),
                suffix: self.suffix.clone(),
                callpath_type: new_callpath_type,
            }
        }
    }

    pub fn as_vec_string(&self) -> Vec<String> {
        self.prefixes
            .iter()
            .map(|p| p.to_string())
            .chain(std::iter::once(self.suffix.to_string()))
            .collect::<Vec<_>>()
    }

    /// Create a full [CallPath] from a given [Ident] and the [Namespace] in which the [Ident] is
    /// declared.
    ///
    /// This function is intended to be used while typechecking the identifier declaration, i.e.,
    /// before the identifier is added to the environment.
    pub fn ident_to_fullpath(suffix: Ident, namespace: &Namespace) -> CallPath {
        let mut res: Self = suffix.clone().into();
        for mod_path in namespace.current_mod_path() {
            res.prefixes.push(mod_path.clone())
        }
        res.callpath_type = CallPathType::Full;
        res
    }

    /// Convert a given [CallPath] into a call path suitable for a `use` statement.
    ///
    /// For example, given a path `pkga::SOME_CONST` where `pkga` is an _internal_ library of a package named
    /// `my_project`, the corresponding call path is `pkga::SOME_CONST`.
    ///
    /// Paths to _external_ libraries such `std::lib1::lib2::my_obj` are left unchanged.
    pub fn to_import_path(&self, engines: &Engines, namespace: &Namespace) -> CallPath {
        let converted = self.to_fullpath(engines, namespace);

        if let Some(first) = converted.prefixes.first() {
            if namespace.current_package_name() == first {
                return converted.lshift();
            }
        }
        converted
    }
}

impl<T: Clone> CallPath<T> {
    /// Convert a given [CallPath] to a symbol to a full [CallPath] to a program point in which the
    /// symbol can be resolved (assuming the given [CallPath] is a legal Sway path).
    ///
    /// The resulting [CallPath] is not guaranteed to be located in the package where the symbol is
    /// declared. To obtain the path to the declaration, use [to_canonical_path].
    ///
    /// The [CallPath] is converted within the current module of the supplied namespace.
    ///
    /// For example, given a path `pkga::SOME_CONST` where `pkga` is an _internal_ module of a
    /// package named `my_project`, the corresponding call path is
    /// `my_project::pkga::SOME_CONST`. This does not imply that `SOME_CONST` is declared in the
    /// `my_project::pkga`, but only that the name `SOME_CONST` is bound in `my_project::pkga`.
    ///
    /// Paths to _external_ libraries such `std::lib1::lib2::my_obj` are considered full already
    /// and are left unchanged since `std` is a root of the package `std`.
    pub fn to_fullpath(&self, engines: &Engines, namespace: &Namespace) -> CallPath<T> {
        self.to_fullpath_from_mod_path(engines, namespace, namespace.current_mod_path())
    }

    /// Convert a given [CallPath] to a symbol to a full [CallPath] to a program point in which the
    /// symbol can be resolved (assuming the given [CallPath] is a legal Sway path).
    ///
    /// The resulting [CallPath] is not guaranteed to be located in the package where the symbol is
    /// declared. To obtain the path to the declaration, use [to_canonical_path].
    ///
    /// The [CallPath] is converted within the module given by `mod_path`, which must be a legal
    /// path to a module.
    ///
    /// For example, given a path `pkga::SOME_CONST` where `pkga` is an _internal_ module of a
    /// package named `my_project`, the corresponding call path is
    /// `my_project::pkga::SOME_CONST`. This does not imply that `SOME_CONST` is declared in the
    /// `my_project::pkga`, but only that the name `SOME_CONST` is bound in `my_project::pkga`.
    ///
    /// Paths to _external_ libraries such `std::lib1::lib2::my_obj` are considered full already
    /// and are left unchanged since `std` is a root of the package `std`.
    pub fn to_fullpath_from_mod_path(
        &self,
        engines: &Engines,
        namespace: &Namespace,
        mod_path: &Vec<Ident>,
    ) -> CallPath<T> {
        let mod_path_module = namespace.module_from_absolute_path(mod_path);

        match self.callpath_type {
            CallPathType::Full => self.clone(),
            CallPathType::RelativeToPackageRoot => {
                let mut prefixes = vec![mod_path[0].clone()];
                for ident in self.prefixes.iter() {
                    prefixes.push(ident.clone());
                }
                Self {
                    prefixes,
                    suffix: self.suffix.clone(),
                    callpath_type: CallPathType::Full,
                }
            }
            CallPathType::Ambiguous => {
                if self.prefixes.is_empty() {
                    // 		    // Given a path to a symbol that has no prefixes, discover the path to the symbol as a
                    // 		    // combination of the package name in which the symbol is defined and the path to the
                    // 		    // current submodule.
                    CallPath {
                        prefixes: mod_path.clone(),
                        suffix: self.suffix.clone(),
                        callpath_type: CallPathType::Full,
                    }
                } else if mod_path_module.is_some()
                    && (mod_path_module.unwrap().has_submodule(&self.prefixes[0])
                        || namespace.module_has_binding(engines, mod_path, &self.prefixes[0]))
                {
                    // The first identifier in the prefix is a submodule of the current
                    // module.
                    //
                    // The path is a qualified path relative to the current module
                    //
                    // Complete the path by prepending the package name and the path to the current module.
                    CallPath {
                        prefixes: mod_path.iter().chain(&self.prefixes).cloned().collect(),
                        suffix: self.suffix.clone(),
                        callpath_type: CallPathType::Full,
                    }
                } else if namespace.package_exists(&self.prefixes[0])
                    && namespace.module_is_external(&self.prefixes)
                {
                    // The first identifier refers to an external package. The path is already fully qualified.
                    CallPath {
                        prefixes: self.prefixes.clone(),
                        suffix: self.suffix.clone(),
                        callpath_type: CallPathType::Full,
                    }
                } else {
                    // The first identifier in the prefix is neither a submodule of the current module nor the name of an external package.
                    // This is probably an illegal path, so let it fail by assuming it is bound in the current module.
                    CallPath {
                        prefixes: mod_path.iter().chain(&self.prefixes).cloned().collect(),
                        suffix: self.suffix.clone(),
                        callpath_type: CallPathType::Full,
                    }
                }
            }
        }
    }
}

impl CallPath {
    /// Convert a given [CallPath] to a symbol to a full [CallPath] to where the symbol is declared
    /// (assuming the given [CallPath] is a legal Sway path).
    ///
    /// The [CallPath] is converted within the current module of the supplied namespace.
    ///
    /// For example, given a path `pkga::SOME_CONST` where `pkga` is an _internal_ module of a
    /// package named `my_project`, and `SOME_CONST` is bound in the module `my_project::pkga`, then
    /// the corresponding call path is the full callpath to the declaration that `SOME_CONST` is
    /// bound to. This does not imply that `SOME_CONST` is declared in the `my_project::pkga`, since
    /// the binding may be the result of an import.
    ///
    /// Paths to _external_ libraries such `std::lib1::lib2::my_obj` are considered full already
    /// and are left unchanged since `std` is a root of the package `std`.
    pub fn to_canonical_path(&self, engines: &Engines, namespace: &Namespace) -> CallPath {
        // Generate a full path to a module where the suffix can be resolved
        let full_path = self.to_fullpath(engines, namespace);

        match namespace.module_from_absolute_path(&full_path.prefixes) {
            Some(module) => {
                // Resolve the path suffix in the found module
                match module.resolve_symbol(&Handler::default(), engines, &full_path.suffix) {
                    Ok((_, decl_path)) => {
                        // Replace the resolvable path with the declaration's path
                        CallPath {
                            prefixes: decl_path,
                            suffix: full_path.suffix.clone(),
                            callpath_type: full_path.callpath_type,
                        }
                    }
                    Err(_) => {
                        // The symbol does not resolve. The symbol isn't bound, so the best bet is
                        // the full path.
                        full_path
                    }
                }
            }
            None => {
                // The resolvable module doesn't exist. The symbol probably doesn't exist, so
                // the best bet is the full path.
                full_path
            }
        }
    }
}