1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
use crate::{
error::*, type_engine::*, CallPath, CompileResult, Ident, TypeArgument, TypeInfo,
TypeParameter, TypedDeclaration, TypedFunctionDeclaration,
};
use crate::semantic_analysis::{
ast_node::TypedStorageDeclaration, declaration::TypedStorageField, TypeCheckedStorageAccess,
};
use sway_types::span::Span;
use std::collections::{BTreeMap, HashMap};
pub mod arena;
pub use arena::*;
type ModuleName = String;
type TraitName = CallPath;
#[derive(Clone, Debug, Default)]
pub struct Namespace {
symbols: BTreeMap<Ident, TypedDeclaration>,
implemented_traits: TraitMap,
modules: BTreeMap<ModuleName, NamespaceRef>,
use_synonyms: HashMap<Ident, Vec<Ident>>,
use_aliases: HashMap<String, Ident>,
declared_storage: Option<TypedStorageDeclaration>,
}
impl Namespace {
pub fn apply_storage_load(
&self,
fields: Vec<Ident>,
storage_fields: &[TypedStorageField],
) -> CompileResult<(TypeCheckedStorageAccess, TypeId)> {
match self.declared_storage {
Some(ref storage) => storage.apply_storage_load(fields, storage_fields),
None => err(
vec![],
vec![CompileError::NoDeclaredStorage {
span: fields[0].span().clone(),
}],
),
}
}
pub fn set_storage_declaration(&mut self, decl: TypedStorageDeclaration) -> CompileResult<()> {
if self.declared_storage.is_some() {
return err(
vec![],
vec![CompileError::MultipleStorageDeclarations { span: decl.span() }],
);
}
self.declared_storage = Some(decl);
ok((), vec![], vec![])
}
pub fn get_all_declared_symbols(&self) -> impl Iterator<Item = &TypedDeclaration> {
self.symbols.values()
}
pub fn get_all_imported_modules(&self) -> impl Iterator<Item = &NamespaceRef> {
self.modules.values()
}
pub(crate) fn insert(&mut self, name: Ident, item: TypedDeclaration) -> CompileResult<()> {
let mut warnings = vec![];
let mut errors = vec![];
if self.symbols.get(&name).is_some() {
match item {
TypedDeclaration::EnumDeclaration { .. }
| TypedDeclaration::StructDeclaration { .. } => {
errors.push(CompileError::ShadowsOtherSymbol {
span: name.span().clone(),
name: name.as_str().to_string(),
});
return err(warnings, errors);
}
_ => {
warnings.push(CompileWarning {
span: name.span().clone(),
warning_content: Warning::ShadowsOtherSymbol {
name: name.span().as_str().to_string(),
},
});
}
}
}
self.symbols.insert(name, item);
ok((), warnings, errors)
}
pub(crate) fn insert_trait_implementation(
&mut self,
trait_name: CallPath,
type_implementing_for: TypeInfo,
functions_buf: Vec<TypedFunctionDeclaration>,
) -> CompileResult<()> {
let mut warnings = vec![];
let mut errors = vec![];
let new_prefixes = if trait_name.prefixes.is_empty() {
self.use_synonyms
.get(&trait_name.suffix)
.unwrap_or(&trait_name.prefixes)
.clone()
} else {
trait_name.prefixes
};
let trait_name = CallPath {
suffix: trait_name.suffix,
prefixes: new_prefixes,
is_absolute: trait_name.is_absolute,
};
check!(
self.implemented_traits
.insert(trait_name, type_implementing_for, functions_buf),
(),
warnings,
errors
);
ok((), warnings, errors)
}
pub fn insert_module(&mut self, module_name: String, ix: NamespaceRef) {
self.modules.insert(module_name, ix);
}
pub fn insert_dependency_module(&mut self, module_name: String, ix: NamespaceRef) {
self.insert_module(module_name, ix)
}
pub(crate) fn get_methods_for_type(&self, r#type: TypeId) -> Vec<TypedFunctionDeclaration> {
self.implemented_traits
.get_methods_for_type(look_up_type_id(r#type))
}
pub(crate) fn copy_methods_to_type(
&mut self,
old_type: TypeInfo,
new_type: TypeInfo,
type_mapping: &[(TypeParameter, usize)],
) {
let methods = self
.implemented_traits
.get_methods_for_type_by_trait(old_type);
for (trait_name, mut trait_methods) in methods.into_iter() {
trait_methods
.iter_mut()
.for_each(|method| method.copy_types(type_mapping));
self.implemented_traits
.insert(trait_name, new_type.clone(), trait_methods);
}
}
pub(crate) fn get_tuple_elems(
&self,
ty: TypeId,
debug_string: impl Into<String>,
debug_span: &Span,
) -> CompileResult<Vec<TypeArgument>> {
let warnings = vec![];
let errors = vec![];
let ty = crate::type_engine::look_up_type_id(ty);
match ty {
TypeInfo::Tuple(elems) => ok(elems, warnings, errors),
TypeInfo::ErrorRecovery => err(warnings, errors),
a => err(
vec![],
vec![CompileError::NotATuple {
name: debug_string.into(),
span: debug_span.clone(),
actually: a.friendly_type_str(),
}],
),
}
}
}
#[derive(Clone, Debug, Default)]
pub(crate) struct TraitMap {
trait_map: Vec<(
(TraitName, TypeInfo),
HashMap<String, TypedFunctionDeclaration>,
)>,
}
impl TraitMap {
pub(crate) fn insert(
&mut self,
trait_name: CallPath,
type_implementing_for: TypeInfo,
methods: Vec<TypedFunctionDeclaration>,
) -> CompileResult<()> {
let warnings = vec![];
let errors = vec![];
let mut methods_map = HashMap::new();
for method in methods.into_iter() {
let method_name = method.name.as_str().to_string();
methods_map.insert(method_name, method);
}
self.trait_map
.push(((trait_name, type_implementing_for), methods_map));
ok((), warnings, errors)
}
pub(crate) fn extend(&mut self, other: TraitMap) -> CompileResult<()> {
let mut warnings = vec![];
let mut errors = vec![];
for ((trait_name, type_implementing_for), methods) in other.trait_map.into_iter() {
check!(
self.insert(
trait_name,
type_implementing_for,
methods.values().cloned().collect()
),
(),
warnings,
errors
);
}
ok((), warnings, errors)
}
pub(crate) fn get_call_path_and_type_info(
&self,
r#type: TypeInfo,
) -> Vec<((CallPath, TypeInfo), Vec<TypedFunctionDeclaration>)> {
let mut ret = vec![];
for ((call_path, type_info), methods) in self.trait_map.iter() {
if type_info.clone() == r#type {
ret.push((
(call_path.clone(), type_info.clone()),
methods.values().cloned().collect(),
));
}
}
ret
}
fn get_methods_for_type(&self, r#type: TypeInfo) -> Vec<TypedFunctionDeclaration> {
let mut methods = vec![];
for ((_, type_info), l_methods) in self.trait_map.iter() {
if *type_info == r#type {
methods.append(&mut l_methods.values().cloned().collect());
}
}
methods
}
fn get_methods_for_type_by_trait(
&self,
r#type: TypeInfo,
) -> HashMap<TraitName, Vec<TypedFunctionDeclaration>> {
let mut methods: HashMap<TraitName, Vec<TypedFunctionDeclaration>> = HashMap::new();
for ((trait_name, type_info), trait_methods) in self.trait_map.iter() {
if *type_info == r#type {
methods.insert(
(*trait_name).clone(),
trait_methods.values().cloned().collect(),
);
}
}
methods
}
}