1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
//! Optimisations related to mem_copy.
//! - replace a `store` directly from a `load` with a `mem_copy_val`.
use rustc_hash::{FxHashMap, FxHashSet};
use crate::{
get_symbol, get_symbols, AnalysisResults, Block, Context, EscapedSymbols, Function,
Instruction, IrError, LocalVar, Pass, PassMutability, ScopedPass, Symbol, Type, Value,
ValueDatum, ESCAPED_SYMBOLS_NAME,
};
pub const MEMCPYOPT_NAME: &str = "memcpyopt";
pub fn create_memcpyopt_pass() -> Pass {
Pass {
name: MEMCPYOPT_NAME,
descr: "Memcopy optimization.",
deps: vec![ESCAPED_SYMBOLS_NAME],
runner: ScopedPass::FunctionPass(PassMutability::Transform(mem_copy_opt)),
}
}
pub fn mem_copy_opt(
context: &mut Context,
analyses: &AnalysisResults,
function: Function,
) -> Result<bool, IrError> {
let mut modified = false;
modified |= local_copy_prop_prememcpy(context, function)?;
modified |= load_store_to_memcopy(context, function)?;
modified |= local_copy_prop(context, analyses, function)?;
Ok(modified)
}
// Combine a series of GEPs into one.
fn combine_indices(context: &Context, val: Value) -> Option<Vec<Value>> {
match &context.values[val.0].value {
ValueDatum::Instruction(Instruction::GetLocal(_)) => Some(vec![]),
ValueDatum::Instruction(Instruction::GetElemPtr {
base,
elem_ptr_ty: _,
indices,
}) => {
let mut base_indices = combine_indices(context, *base)?;
base_indices.append(&mut indices.clone());
Some(base_indices)
}
ValueDatum::Argument(_) => Some(vec![]),
_ => None,
}
}
// Given a memory pointer instruction, compute the offset of indexed element,
// for each symbol that this may alias to.
fn get_memory_offsets(context: &Context, val: Value) -> FxHashMap<Symbol, u64> {
get_symbols(context, val)
.into_iter()
.filter_map(|sym| {
let offset = sym
.get_type(context)
.get_pointee_type(context)?
.get_indexed_offset(context, &combine_indices(context, val)?)?;
Some((sym, offset))
})
.collect()
}
// Can memory ranges [val1, val1+len1] and [val2, val2+len2] overlap?
// Conservatively returns true if cannot statically determine.
fn may_alias(context: &Context, val1: Value, len1: u64, val2: Value, len2: u64) -> bool {
let mem_offsets_1 = get_memory_offsets(context, val1);
let mem_offsets_2 = get_memory_offsets(context, val2);
for (sym1, off1) in mem_offsets_1 {
if let Some(off2) = mem_offsets_2.get(&sym1) {
// does off1 + len1 overlap with off2 + len2?
if (off1 <= *off2 && (off1 + len1 > *off2)) || (*off2 <= off1 && (*off2 + len2 > off1))
{
return true;
}
}
}
false
}
// Are memory ranges [val1, val1+len1] and [val2, val2+len2] exactly the same?
// Conservatively returns false if cannot statically determine.
fn must_alias(context: &Context, val1: Value, len1: u64, val2: Value, len2: u64) -> bool {
let mem_offsets_1 = get_memory_offsets(context, val1);
let mem_offsets_2 = get_memory_offsets(context, val2);
if mem_offsets_1.len() != 1 || mem_offsets_2.len() != 1 {
return false;
}
let (sym1, off1) = mem_offsets_1.iter().next().unwrap();
let (sym2, off2) = mem_offsets_2.iter().next().unwrap();
// does off1 + len1 overlap with off2 + len2?
sym1 == sym2 && off1 == off2 && len1 == len2
}
fn pointee_size(context: &Context, ptr_val: Value) -> u64 {
ptr_val
.get_type(context)
.unwrap()
.get_pointee_type(context)
.expect("Expected arg to be a pointer")
.size_in_bytes(context)
}
struct InstInfo {
// The block in which an instruction is
block: Block,
// Relative (use only for comparison) position of instruction in `block`.
pos: usize,
}
fn local_copy_prop_prememcpy(context: &mut Context, function: Function) -> Result<bool, IrError> {
let mut loads_map = FxHashMap::<Symbol, Vec<Value>>::default();
let mut stores_map = FxHashMap::<Symbol, Vec<Value>>::default();
let mut instr_info_map = FxHashMap::<Value, InstInfo>::default();
let mut asm_uses = FxHashSet::<Symbol>::default();
for (pos, (block, inst)) in function.instruction_iter(context).enumerate() {
let info = || InstInfo { block, pos };
let inst_e = inst.get_instruction(context).unwrap();
match inst_e {
Instruction::Load(src_val_ptr) => {
if let Some(local) = get_symbol(context, *src_val_ptr) {
loads_map
.entry(local)
.and_modify(|loads| loads.push(inst))
.or_insert(vec![inst]);
instr_info_map.insert(inst, info());
}
}
Instruction::Store { dst_val_ptr, .. } => {
if let Some(local) = get_symbol(context, *dst_val_ptr) {
stores_map
.entry(local)
.and_modify(|stores| stores.push(inst))
.or_insert(vec![inst]);
instr_info_map.insert(inst, info());
}
}
Instruction::AsmBlock(_, args) => {
for arg in args {
if let Some(arg) = arg.initializer {
if let Some(local) = get_symbol(context, arg) {
asm_uses.insert(local);
}
}
}
}
_ => (),
}
}
let mut to_delete = FxHashSet::<Value>::default();
let candidates: FxHashMap<Symbol, Symbol> = function
.instruction_iter(context)
.enumerate()
.filter_map(|(pos, (block, instr_val))| {
instr_val
.get_instruction(context)
.and_then(|instr| {
// Is the instruction a Store?
if let Instruction::Store {
dst_val_ptr,
stored_val,
} = instr
{
get_symbol(context, *dst_val_ptr).and_then(|dst_local| {
stored_val
.get_instruction(context)
.map(|src_instr| (src_instr, stored_val, dst_local))
})
} else {
None
}
})
.and_then(|(src_instr, stored_val, dst_local)| {
// Is the Store source a Load?
if let Instruction::Load(src_val_ptr) = src_instr {
get_symbol(context, *src_val_ptr)
.map(|src_local| (stored_val, dst_local, src_local))
} else {
None
}
})
.and_then(|(src_load, dst_local, src_local)| {
let (temp_empty1, temp_empty2, temp_empty3) = (vec![], vec![], vec![]);
let dst_local_stores = stores_map.get(&dst_local).unwrap_or(&temp_empty1);
let src_local_stores = stores_map.get(&src_local).unwrap_or(&temp_empty2);
let dst_local_loads = loads_map.get(&dst_local).unwrap_or(&temp_empty3);
// This must be the only store of dst_local.
if dst_local_stores.len() != 1 || dst_local_stores[0] != instr_val
||
// All stores of src_local must be in the same block, prior to src_load.
!src_local_stores.iter().all(|store_val|{
let instr_info = instr_info_map.get(store_val).unwrap();
let src_load_info = instr_info_map.get(src_load).unwrap();
instr_info.block == block && instr_info.pos < src_load_info.pos
})
||
// All loads of dst_local must be after this instruction, in the same block.
!dst_local_loads.iter().all(|load_val| {
let instr_info = instr_info_map.get(load_val).unwrap();
instr_info.block == block && instr_info.pos > pos
})
// We don't deal with ASM blocks.
|| asm_uses.contains(&dst_local)
// We don't deal part copies.
|| dst_local.get_type(context) != src_local.get_type(context)
// We don't replace the destination when it's an arg.
|| matches!(dst_local, Symbol::Arg(_))
{
None
} else {
to_delete.insert(instr_val);
Some((dst_local, src_local))
}
})
})
.collect();
// if we have A replaces B and B replaces C, then A must replace C also.
fn closure(candidates: &FxHashMap<Symbol, Symbol>, src_local: &Symbol) -> Option<Symbol> {
candidates
.get(src_local)
.map(|replace_with| closure(candidates, replace_with).unwrap_or(*replace_with))
}
// If the source is an Arg, we replace uses of destination with Arg.
// otherwise (`get_local`), we replace the local symbol in-place.
enum ReplaceWith {
InPlaceLocal(LocalVar),
Value(Value),
}
// Because we can't borrow context for both iterating and replacing, do it in 2 steps.
let replaces: Vec<_> = function
.instruction_iter(context)
.filter_map(|(_block, value)| match value.get_instruction(context) {
Some(Instruction::GetLocal(local)) => {
closure(&candidates, &Symbol::Local(*local)).map(|replace_with| {
(
value,
match replace_with {
Symbol::Local(local) => ReplaceWith::InPlaceLocal(local),
Symbol::Arg(ba) => {
ReplaceWith::Value(ba.block.get_arg(context, ba.idx).unwrap())
}
},
)
})
}
_ => None,
})
.collect();
let mut value_replace = FxHashMap::<Value, Value>::default();
for (value, replace_with) in replaces.into_iter() {
match replace_with {
ReplaceWith::InPlaceLocal(replacement_var) => {
let Some(Instruction::GetLocal(redundant_var)) = value.get_instruction(context)
else {
panic!("earlier match now fails");
};
if redundant_var.is_mutable(context) {
replacement_var.set_mutable(context, true);
}
value.replace(
context,
ValueDatum::Instruction(Instruction::GetLocal(replacement_var)),
)
}
ReplaceWith::Value(replace_with) => {
value_replace.insert(value, replace_with);
}
}
}
function.replace_values(context, &value_replace, None);
// Delete stores to the replaced local.
let blocks: Vec<Block> = function.block_iter(context).collect();
for block in blocks {
block.remove_instructions(context, |value| to_delete.contains(&value));
}
Ok(true)
}
/// Copy propagation of `memcpy`s within a block.
fn local_copy_prop(
context: &mut Context,
analyses: &AnalysisResults,
function: Function,
) -> Result<bool, IrError> {
let escaped_symbols: &EscapedSymbols = analyses.get_analysis_result(function);
// Currently (as we scan a block) available `memcpy`s.
let mut available_copies: FxHashSet<Value>;
// Map a symbol to the available `memcpy`s of which its a source.
let mut src_to_copies: FxHashMap<Symbol, FxHashSet<Value>>;
// Map a symbol to the available `memcpy`s of which its a destination.
// (multiple memcpys for the same destination may be available when
// they are partial / field writes, and don't alias).
let mut dest_to_copies: FxHashMap<Symbol, FxHashSet<Value>>;
// If a value (symbol) is found to be defined, remove it from our tracking.
fn kill_defined_symbol(
context: &Context,
value: Value,
len: u64,
available_copies: &mut FxHashSet<Value>,
src_to_copies: &mut FxHashMap<Symbol, FxHashSet<Value>>,
dest_to_copies: &mut FxHashMap<Symbol, FxHashSet<Value>>,
) {
let syms = get_symbols(context, value);
for sym in syms {
if let Some(copies) = src_to_copies.get_mut(&sym) {
for copy in &*copies {
let (_, src_ptr, copy_size) = deconstruct_memcpy(context, *copy);
if may_alias(context, value, len, src_ptr, copy_size) {
available_copies.remove(copy);
}
}
copies.retain(|copy| available_copies.contains(copy));
}
if let Some(copies) = dest_to_copies.get_mut(&sym) {
for copy in &*copies {
let (dest_ptr, copy_size) = match copy.get_instruction(context).unwrap() {
Instruction::MemCopyBytes {
dst_val_ptr,
src_val_ptr: _,
byte_len,
} => (*dst_val_ptr, *byte_len),
Instruction::MemCopyVal {
dst_val_ptr,
src_val_ptr: _,
} => (*dst_val_ptr, pointee_size(context, *dst_val_ptr)),
_ => panic!("Unexpected copy instruction"),
};
if may_alias(context, value, len, dest_ptr, copy_size) {
available_copies.remove(copy);
}
}
copies.retain(|copy| available_copies.contains(copy));
}
}
}
#[allow(clippy::too_many_arguments)]
fn gen_new_copy(
context: &Context,
escaped_symbols: &EscapedSymbols,
copy_inst: Value,
dst_val_ptr: Value,
src_val_ptr: Value,
available_copies: &mut FxHashSet<Value>,
src_to_copies: &mut FxHashMap<Symbol, FxHashSet<Value>>,
dest_to_copies: &mut FxHashMap<Symbol, FxHashSet<Value>>,
) {
if let (Some(dst_sym), Some(src_sym)) = (
get_symbol(context, dst_val_ptr),
get_symbol(context, src_val_ptr),
) {
if escaped_symbols.contains(&dst_sym) || escaped_symbols.contains(&src_sym) {
return;
}
dest_to_copies
.entry(dst_sym)
.and_modify(|set| {
set.insert(copy_inst);
})
.or_insert([copy_inst].into_iter().collect());
src_to_copies
.entry(src_sym)
.and_modify(|set| {
set.insert(copy_inst);
})
.or_insert([copy_inst].into_iter().collect());
available_copies.insert(copy_inst);
}
}
// Deconstruct a memcpy into (dst_val_ptr, src_val_ptr, copy_len).
fn deconstruct_memcpy(context: &Context, inst: Value) -> (Value, Value, u64) {
match inst.get_instruction(context).unwrap() {
Instruction::MemCopyBytes {
dst_val_ptr,
src_val_ptr,
byte_len,
} => (*dst_val_ptr, *src_val_ptr, *byte_len),
Instruction::MemCopyVal {
dst_val_ptr,
src_val_ptr,
} => (
*dst_val_ptr,
*src_val_ptr,
pointee_size(context, *dst_val_ptr),
),
_ => unreachable!("Only memcpy instructions handled"),
}
}
struct ReplGep {
base: Symbol,
elem_ptr_ty: Type,
indices: Vec<Value>,
}
enum Replacement {
OldGep(Value),
NewGep(ReplGep),
}
fn process_load(
context: &Context,
escaped_symbols: &EscapedSymbols,
inst: Value,
src_val_ptr: Value,
dest_to_copies: &FxHashMap<Symbol, FxHashSet<Value>>,
replacements: &mut FxHashMap<Value, Replacement>,
) -> bool {
// For every `memcpy` that src_val_ptr is a destination of,
// check if we can do the load from the source of that memcpy.
if let Some(src_sym) = get_symbol(context, src_val_ptr) {
if escaped_symbols.contains(&src_sym) {
return false;
}
for memcpy in dest_to_copies
.get(&src_sym)
.iter()
.flat_map(|set| set.iter())
{
let (dst_ptr_memcpy, src_ptr_memcpy, copy_len) =
deconstruct_memcpy(context, *memcpy);
// If the location where we're loading from exactly matches the destination of
// the memcpy, just load from the source pointer of the memcpy.
// TODO: In both the arms below, we check that the pointer type
// matches. This isn't really needed as the copy happens and the
// data we want is safe to access. But we just don't know how to
// generate the right GEP always. So that's left for another day.
if must_alias(
context,
src_val_ptr,
pointee_size(context, src_val_ptr),
dst_ptr_memcpy,
copy_len,
) {
// Replace src_val_ptr with src_ptr_memcpy.
if src_val_ptr.get_type(context) == src_ptr_memcpy.get_type(context) {
replacements.insert(inst, Replacement::OldGep(src_ptr_memcpy));
return true;
}
} else {
// if the memcpy copies the entire symbol, we could
// insert a new GEP from the source of the memcpy.
if let (Some(memcpy_src_sym), Some(memcpy_dst_sym), Some(new_indices)) = (
get_symbol(context, src_ptr_memcpy),
get_symbol(context, dst_ptr_memcpy),
combine_indices(context, src_val_ptr),
) {
let memcpy_src_sym_type = memcpy_src_sym
.get_type(context)
.get_pointee_type(context)
.unwrap();
let memcpy_dst_sym_type = memcpy_dst_sym
.get_type(context)
.get_pointee_type(context)
.unwrap();
if memcpy_src_sym_type == memcpy_dst_sym_type
&& memcpy_dst_sym_type.size_in_bytes(context) == copy_len
{
replacements.insert(
inst,
Replacement::NewGep(ReplGep {
base: memcpy_src_sym,
elem_ptr_ty: src_val_ptr.get_type(context).unwrap(),
indices: new_indices,
}),
);
return true;
}
}
}
}
}
false
}
let mut modified = false;
for block in function.block_iter(context) {
// A `memcpy` itself has a `load`, so we can `process_load` on it.
// If now, we've marked the source of this `memcpy` for optimization,
// it itself cannot be "generated" as a new candidate `memcpy`.
// This is the reason we run a loop on the block till there's no more
// optimization possible. We could track just the changes and do it
// all in one go, but that would complicate the algorithm. So I've
// marked this as a TODO for now (#4600).
loop {
available_copies = FxHashSet::default();
src_to_copies = FxHashMap::default();
dest_to_copies = FxHashMap::default();
// Replace the load/memcpy source pointer with something else.
let mut replacements = FxHashMap::default();
fn kill_escape_args(
context: &Context,
args: &Vec<Value>,
available_copies: &mut FxHashSet<Value>,
src_to_copies: &mut FxHashMap<Symbol, FxHashSet<Value>>,
dest_to_copies: &mut FxHashMap<Symbol, FxHashSet<Value>>,
) {
for arg in args {
let max_size = get_symbols(context, *arg)
.iter()
.filter_map(|sym| {
sym.get_type(context)
.get_pointee_type(context)
.map(|pt| pt.size_in_bytes(context))
})
.max()
.unwrap_or(0);
kill_defined_symbol(
context,
*arg,
max_size,
available_copies,
src_to_copies,
dest_to_copies,
);
}
}
for inst in block.instruction_iter(context) {
match inst.get_instruction(context).unwrap() {
Instruction::Call(_, args) => kill_escape_args(
context,
args,
&mut available_copies,
&mut src_to_copies,
&mut dest_to_copies,
),
Instruction::AsmBlock(_, args) => {
let args = args.iter().filter_map(|arg| arg.initializer).collect();
kill_escape_args(
context,
&args,
&mut available_copies,
&mut src_to_copies,
&mut dest_to_copies,
);
}
Instruction::IntToPtr(_, _) => {
// The only safe thing we can do is to clear all information.
available_copies.clear();
src_to_copies.clear();
dest_to_copies.clear();
}
Instruction::Load(src_val_ptr) => {
process_load(
context,
escaped_symbols,
inst,
*src_val_ptr,
&dest_to_copies,
&mut replacements,
);
}
Instruction::MemCopyBytes { .. } | Instruction::MemCopyVal { .. } => {
let (dst_val_ptr, src_val_ptr, copy_len) =
deconstruct_memcpy(context, inst);
kill_defined_symbol(
context,
dst_val_ptr,
copy_len,
&mut available_copies,
&mut src_to_copies,
&mut dest_to_copies,
);
// If this memcpy itself can be optimized, we do just that, and not "gen" a new one.
if !process_load(
context,
escaped_symbols,
inst,
src_val_ptr,
&dest_to_copies,
&mut replacements,
) {
gen_new_copy(
context,
escaped_symbols,
inst,
dst_val_ptr,
src_val_ptr,
&mut available_copies,
&mut src_to_copies,
&mut dest_to_copies,
);
}
}
Instruction::Store {
dst_val_ptr,
stored_val: _,
} => {
kill_defined_symbol(
context,
*dst_val_ptr,
pointee_size(context, *dst_val_ptr),
&mut available_copies,
&mut src_to_copies,
&mut dest_to_copies,
);
}
_ => (),
}
}
if replacements.is_empty() {
break;
} else {
modified = true;
}
// If we have any NewGep replacements, insert those new GEPs into the block.
// Since the new instructions need to be just before the value load that they're
// going to be used in, we copy all the instructions into a new vec
// and just replace the contents of the basic block.
let mut new_insts = vec![];
for inst in block.instruction_iter(context) {
if let Some(replacement) = replacements.remove(&inst) {
let replacement = match replacement {
Replacement::OldGep(v) => v,
Replacement::NewGep(ReplGep {
base,
elem_ptr_ty,
indices,
}) => {
let base = match base {
Symbol::Local(local) => {
let base = Value::new_instruction(
context,
Instruction::GetLocal(local),
);
new_insts.push(base);
base
}
Symbol::Arg(block_arg) => {
block_arg.block.get_arg(context, block_arg.idx).unwrap()
}
};
let v = Value::new_instruction(
context,
Instruction::GetElemPtr {
base,
elem_ptr_ty,
indices,
},
);
new_insts.push(v);
v
}
};
match inst.get_instruction_mut(context) {
Some(Instruction::Load(ref mut src_val_ptr))
| Some(Instruction::MemCopyBytes {
ref mut src_val_ptr,
..
})
| Some(Instruction::MemCopyVal {
ref mut src_val_ptr,
..
}) => *src_val_ptr = replacement,
_ => panic!("Unexpected instruction type"),
}
}
new_insts.push(inst);
}
// Replace the basic block contents with what we just built.
let _ = std::mem::replace(&mut (context.blocks[block.0].instructions), new_insts);
}
}
Ok(modified)
}
// Is (an alias of) src_ptr clobbered on any path from load_val to store_val?
fn is_clobbered(
context: &Context,
store_block: Block,
store_val: Value,
load_val: Value,
src_ptr: Value,
) -> bool {
let mut iter = store_block
.instruction_iter(context)
.rev()
.skip_while(|i| i != &store_val);
assert!(iter.next().unwrap() == store_val);
let src_symbols = get_symbols(context, src_ptr);
// Scan backwards till we encounter load_val, checking if
// any store aliases with src_ptr.
let mut worklist: Vec<(Block, Box<dyn Iterator<Item = Value>>)> =
vec![(store_block, Box::new(iter))];
let mut visited = FxHashSet::default();
'next_job: while let Some((block, iter)) = worklist.pop() {
visited.insert(block);
for inst in iter {
if inst == load_val || inst == store_val {
// We don't need to go beyond either the source load or the candidate store.
continue 'next_job;
}
if let Some(Instruction::Store {
dst_val_ptr,
stored_val: _,
}) = inst.get_instruction(context)
{
if get_symbols(context, *dst_val_ptr)
.iter()
.any(|sym| src_symbols.contains(sym))
{
return true;
}
}
}
for pred in block.pred_iter(context) {
if !visited.contains(pred) {
worklist.push((
*pred,
Box::new(pred.instruction_iter(context).rev().skip_while(|_| false)),
));
}
}
}
false
}
fn load_store_to_memcopy(context: &mut Context, function: Function) -> Result<bool, IrError> {
// Find any `store`s of `load`s. These can be replaced with `mem_copy` and are especially
// important for non-copy types on architectures which don't support loading them.
let candidates = function
.instruction_iter(context)
.filter_map(|(block, store_instr_val)| {
store_instr_val
.get_instruction(context)
.and_then(|instr| {
// Is the instruction a Store?
if let Instruction::Store {
dst_val_ptr,
stored_val,
} = instr
{
stored_val
.get_instruction(context)
.map(|src_instr| (*stored_val, src_instr, dst_val_ptr))
} else {
None
}
})
.and_then(|(src_instr_val, src_instr, dst_val_ptr)| {
// Is the Store source a Load?
if let Instruction::Load(src_val_ptr) = src_instr {
Some((
block,
src_instr_val,
store_instr_val,
*dst_val_ptr,
*src_val_ptr,
))
} else {
None
}
})
.and_then(
|candidate @ (block, load_val, store_val, _dst_ptr, src_ptr)| {
// Ensure that there's no path from load_val to store_val that might overwrite src_ptr.
(!is_clobbered(context, block, store_val, load_val, src_ptr))
.then_some(candidate)
},
)
})
.collect::<Vec<_>>();
if candidates.is_empty() {
return Ok(false);
}
for (block, _src_instr_val, store_val, dst_val_ptr, src_val_ptr) in candidates {
let mem_copy_val = Value::new_instruction(
context,
Instruction::MemCopyVal {
dst_val_ptr,
src_val_ptr,
},
);
block.replace_instruction(context, store_val, mem_copy_val)?;
}
Ok(true)
}