sway_ir/
function.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
//! A typical function data type.
//!
//! [`Function`] is named, takes zero or more arguments and has an optional return value.  It
//! contains a collection of [`Block`]s.
//!
//! It also maintains a collection of local values which can be typically regarded as variables
//! existing in the function scope.

use std::collections::{BTreeMap, HashMap};
use std::fmt::Write;

use rustc_hash::{FxHashMap, FxHashSet};

use crate::InstOp;
use crate::{
    block::{Block, BlockIterator, Label},
    constant::Constant,
    context::Context,
    error::IrError,
    irtype::Type,
    local_var::{LocalVar, LocalVarContent},
    metadata::MetadataIndex,
    module::Module,
    value::{Value, ValueDatum},
    BlockArgument, BranchToWithArgs,
};

/// A wrapper around an [ECS](https://github.com/orlp/slotmap) handle into the
/// [`Context`].
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Function(pub slotmap::DefaultKey);

#[doc(hidden)]
pub struct FunctionContent {
    pub name: String,
    pub arguments: Vec<(String, Value)>,
    pub return_type: Type,
    pub blocks: Vec<Block>,
    pub module: Module,
    pub is_public: bool,
    pub is_entry: bool,
    /// True if the function was an entry, before getting wrapped
    /// by the `__entry` function. E.g, a script `main` function.
    pub is_original_entry: bool,
    pub is_fallback: bool,
    pub selector: Option<[u8; 4]>,
    pub metadata: Option<MetadataIndex>,

    pub local_storage: BTreeMap<String, LocalVar>, // BTree rather than Hash for deterministic ordering.

    next_label_idx: u64,
}

impl Function {
    /// Return a new [`Function`] handle.
    ///
    /// Creates a [`Function`] in the `context` within `module` and returns a handle.
    ///
    /// `name`, `args`, `return_type` and `is_public` are the usual suspects.  `selector` is a
    /// special value used for Sway contract calls; much like `name` is unique and not particularly
    /// used elsewhere in the IR.
    #[allow(clippy::too_many_arguments)]
    pub fn new(
        context: &mut Context,
        module: Module,
        name: String,
        args: Vec<(String, Type, Option<MetadataIndex>)>,
        return_type: Type,
        selector: Option<[u8; 4]>,
        is_public: bool,
        is_entry: bool,
        is_original_entry: bool,
        is_fallback: bool,
        metadata: Option<MetadataIndex>,
    ) -> Function {
        let content = FunctionContent {
            name,
            // Arguments to a function are the arguments to its entry block.
            // We set it up after creating the entry block below.
            arguments: Vec::new(),
            return_type,
            blocks: Vec::new(),
            module,
            is_public,
            is_entry,
            is_original_entry,
            is_fallback,
            selector,
            metadata,
            local_storage: BTreeMap::new(),
            next_label_idx: 0,
        };
        let func = Function(context.functions.insert(content));

        context.modules[module.0].functions.push(func);

        let entry_block = Block::new(context, func, Some("entry".to_owned()));
        context
            .functions
            .get_mut(func.0)
            .unwrap()
            .blocks
            .push(entry_block);

        // Setup the arguments.
        let arguments: Vec<_> = args
            .into_iter()
            .enumerate()
            .map(|(idx, (name, ty, arg_metadata))| {
                (
                    name,
                    Value::new_argument(
                        context,
                        BlockArgument {
                            block: entry_block,
                            idx,
                            ty,
                        },
                    )
                    .add_metadatum(context, arg_metadata),
                )
            })
            .collect();
        context
            .functions
            .get_mut(func.0)
            .unwrap()
            .arguments
            .clone_from(&arguments);
        let (_, arg_vals): (Vec<_>, Vec<_>) = arguments.iter().cloned().unzip();
        context.blocks.get_mut(entry_block.0).unwrap().args = arg_vals;

        func
    }

    /// Create and append a new [`Block`] to this function.
    pub fn create_block(&self, context: &mut Context, label: Option<Label>) -> Block {
        let block = Block::new(context, *self, label);
        let func = context.functions.get_mut(self.0).unwrap();
        func.blocks.push(block);
        block
    }

    /// Create and insert a new [`Block`] into this function.
    ///
    /// The new block is inserted before `other`.
    pub fn create_block_before(
        &self,
        context: &mut Context,
        other: &Block,
        label: Option<Label>,
    ) -> Result<Block, IrError> {
        let block_idx = context.functions[self.0]
            .blocks
            .iter()
            .position(|block| block == other)
            .ok_or_else(|| {
                let label = &context.blocks[other.0].label;
                IrError::MissingBlock(label.clone())
            })?;

        let new_block = Block::new(context, *self, label);
        context.functions[self.0]
            .blocks
            .insert(block_idx, new_block);
        Ok(new_block)
    }

    /// Create and insert a new [`Block`] into this function.
    ///
    /// The new block is inserted after `other`.
    pub fn create_block_after(
        &self,
        context: &mut Context,
        other: &Block,
        label: Option<Label>,
    ) -> Result<Block, IrError> {
        // We need to create the new block first (even though we may not use it on Err below) since
        // we can't borrow context mutably twice.
        let new_block = Block::new(context, *self, label);
        let func = context.functions.get_mut(self.0).unwrap();
        func.blocks
            .iter()
            .position(|block| block == other)
            .map(|idx| {
                func.blocks.insert(idx + 1, new_block);
                new_block
            })
            .ok_or_else(|| {
                let label = &context.blocks[other.0].label;
                IrError::MissingBlock(label.clone())
            })
    }

    /// Remove a [`Block`] from this function.
    ///
    /// > Care must be taken to ensure the block has no predecessors otherwise the function will be
    /// > made invalid.
    pub fn remove_block(&self, context: &mut Context, block: &Block) -> Result<(), IrError> {
        let label = block.get_label(context);
        let func = context.functions.get_mut(self.0).unwrap();
        let block_idx = func
            .blocks
            .iter()
            .position(|b| b == block)
            .ok_or(IrError::RemoveMissingBlock(label))?;
        func.blocks.remove(block_idx);
        Ok(())
    }

    /// Get a new unique block label.
    ///
    /// If `hint` is `None` then the label will be in the form `"blockN"` where N is an
    /// incrementing decimal.
    ///
    /// Otherwise if the hint is already unique to this function it will be returned.  If not
    /// already unique it will have N appended to it until it is unique.
    pub fn get_unique_label(&self, context: &mut Context, hint: Option<String>) -> String {
        match hint {
            Some(hint) => {
                if context.functions[self.0]
                    .blocks
                    .iter()
                    .any(|block| context.blocks[block.0].label == hint)
                {
                    let idx = self.get_next_label_idx(context);
                    self.get_unique_label(context, Some(format!("{hint}{idx}")))
                } else {
                    hint
                }
            }
            None => {
                let idx = self.get_next_label_idx(context);
                self.get_unique_label(context, Some(format!("block{idx}")))
            }
        }
    }

    fn get_next_label_idx(&self, context: &mut Context) -> u64 {
        let func = context.functions.get_mut(self.0).unwrap();
        let idx = func.next_label_idx;
        func.next_label_idx += 1;
        idx
    }

    /// Return the number of blocks in this function.
    pub fn num_blocks(&self, context: &Context) -> usize {
        context.functions[self.0].blocks.len()
    }

    /// Return the number of instructions in this function.
    ///
    /// The [crate::InstOp::AsmBlock] is counted as a single instruction,
    /// regardless of the number of [crate::asm::AsmInstruction]s in the ASM block.
    /// E.g., even if the ASM block is empty and contains no instructions, it
    /// will still be counted as a single instruction.
    ///
    /// If you want to count every ASM instruction as an instruction, use
    /// `num_instructions_incl_asm_instructions` instead.
    pub fn num_instructions(&self, context: &Context) -> usize {
        self.block_iter(context)
            .map(|block| block.num_instructions(context))
            .sum()
    }

    /// Return the number of instructions in this function, including
    /// the [crate::asm::AsmInstruction]s found in [crate::InstOp::AsmBlock]s.
    ///
    /// Every [crate::asm::AsmInstruction] encountered in any of the ASM blocks
    /// will be counted as an instruction. The [crate::InstOp::AsmBlock] itself
    /// is not counted but rather replaced with the number of ASM instructions
    /// found in the block. In other words, empty ASM blocks do not count as
    /// instructions.
    ///
    /// If you want to count [crate::InstOp::AsmBlock]s as single instructions, use
    /// `num_instructions` instead.
    pub fn num_instructions_incl_asm_instructions(&self, context: &Context) -> usize {
        self.instruction_iter(context).fold(0, |num, (_, value)| {
            match &value
                .get_instruction(context)
                .expect("We are iterating through the instructions.")
                .op
            {
                InstOp::AsmBlock(asm, _) => num + asm.body.len(),
                _ => num + 1,
            }
        })
    }

    /// Return the function name.
    pub fn get_name<'a>(&self, context: &'a Context) -> &'a str {
        &context.functions[self.0].name
    }

    /// Return the module that this function belongs to.
    pub fn get_module(&self, context: &Context) -> Module {
        context.functions[self.0].module
    }

    /// Return the function entry (i.e., the first) block.
    pub fn get_entry_block(&self, context: &Context) -> Block {
        context.functions[self.0].blocks[0]
    }

    /// Return the attached metadata.
    pub fn get_metadata(&self, context: &Context) -> Option<MetadataIndex> {
        context.functions[self.0].metadata
    }

    /// Whether this function has a valid selector.
    pub fn has_selector(&self, context: &Context) -> bool {
        context.functions[self.0].selector.is_some()
    }

    /// Return the function selector, if it has one.
    pub fn get_selector(&self, context: &Context) -> Option<[u8; 4]> {
        context.functions[self.0].selector
    }

    /// Whether or not the function is a program entry point, i.e. `main`, `#[test]` fns or abi
    /// methods.
    pub fn is_entry(&self, context: &Context) -> bool {
        context.functions[self.0].is_entry
    }

    /// Whether or not the function was a program entry point, i.e. `main`, `#[test]` fns or abi
    /// methods, before it got wrapped within the `__entry` function.
    pub fn is_original_entry(&self, context: &Context) -> bool {
        context.functions[self.0].is_original_entry
    }

    /// Whether or not this function is a contract fallback function
    pub fn is_fallback(&self, context: &Context) -> bool {
        context.functions[self.0].is_fallback
    }

    // Get the function return type.
    pub fn get_return_type(&self, context: &Context) -> Type {
        context.functions[self.0].return_type
    }

    // Set a new function return type.
    pub fn set_return_type(&self, context: &mut Context, new_ret_type: Type) {
        context.functions.get_mut(self.0).unwrap().return_type = new_ret_type
    }

    /// Get the number of args.
    pub fn num_args(&self, context: &Context) -> usize {
        context.functions[self.0].arguments.len()
    }

    /// Get an arg value by name, if found.
    pub fn get_arg(&self, context: &Context, name: &str) -> Option<Value> {
        context.functions[self.0]
            .arguments
            .iter()
            .find_map(|(arg_name, val)| (arg_name == name).then_some(val))
            .copied()
    }

    /// Append an extra argument to the function signature.
    ///
    /// NOTE: `arg` must be a `BlockArgument` value with the correct index otherwise `add_arg` will
    /// panic.
    pub fn add_arg<S: Into<String>>(&self, context: &mut Context, name: S, arg: Value) {
        match context.values[arg.0].value {
            ValueDatum::Argument(BlockArgument { idx, .. })
                if idx == context.functions[self.0].arguments.len() =>
            {
                context.functions[self.0].arguments.push((name.into(), arg));
            }
            _ => panic!("Inconsistent function argument being added"),
        }
    }

    /// Find the name of an arg by value.
    pub fn lookup_arg_name<'a>(&self, context: &'a Context, value: &Value) -> Option<&'a String> {
        context.functions[self.0]
            .arguments
            .iter()
            .find_map(|(name, arg_val)| (arg_val == value).then_some(name))
    }

    /// Return an iterator for each of the function arguments.
    pub fn args_iter<'a>(&self, context: &'a Context) -> impl Iterator<Item = &'a (String, Value)> {
        context.functions[self.0].arguments.iter()
    }

    /// Get a pointer to a local value by name, if found.
    pub fn get_local_var(&self, context: &Context, name: &str) -> Option<LocalVar> {
        context.functions[self.0].local_storage.get(name).copied()
    }

    /// Find the name of a local value by pointer.
    pub fn lookup_local_name<'a>(
        &self,
        context: &'a Context,
        var: &LocalVar,
    ) -> Option<&'a String> {
        context.functions[self.0]
            .local_storage
            .iter()
            .find_map(|(name, local_var)| if local_var == var { Some(name) } else { None })
    }

    /// Add a value to the function local storage.
    ///
    /// The name must be unique to this function else an error is returned.
    pub fn new_local_var(
        &self,
        context: &mut Context,
        name: String,
        local_type: Type,
        initializer: Option<Constant>,
        mutable: bool,
    ) -> Result<LocalVar, IrError> {
        let var = LocalVar::new(context, local_type, initializer, mutable);
        let func = context.functions.get_mut(self.0).unwrap();
        func.local_storage
            .insert(name.clone(), var)
            .map(|_| Err(IrError::FunctionLocalClobbered(func.name.clone(), name)))
            .unwrap_or(Ok(var))
    }

    /// Add a value to the function local storage, by forcing the name to be unique if needed.
    ///
    /// Will use the provided name as a hint and rename to guarantee insertion.
    pub fn new_unique_local_var(
        &self,
        context: &mut Context,
        name: String,
        local_type: Type,
        initializer: Option<Constant>,
        mutable: bool,
    ) -> LocalVar {
        let func = &context.functions[self.0];
        let new_name = if func.local_storage.contains_key(&name) {
            // Assuming that we'll eventually find a unique name by appending numbers to the old
            // one...
            (0..)
                .find_map(|n| {
                    let candidate = format!("{name}{n}");
                    if func.local_storage.contains_key(&candidate) {
                        None
                    } else {
                        Some(candidate)
                    }
                })
                .unwrap()
        } else {
            name
        };
        self.new_local_var(context, new_name, local_type, initializer, mutable)
            .unwrap()
    }

    /// Return an iterator to all of the values in this function's local storage.
    pub fn locals_iter<'a>(
        &self,
        context: &'a Context,
    ) -> impl Iterator<Item = (&'a String, &'a LocalVar)> {
        context.functions[self.0].local_storage.iter()
    }

    /// Remove given list of locals
    pub fn remove_locals(&self, context: &mut Context, removals: &Vec<String>) {
        for remove in removals {
            if let Some(local) = context.functions[self.0].local_storage.remove(remove) {
                context.local_vars.remove(local.0);
            }
        }
    }

    /// Merge values from another [`Function`] into this one.
    ///
    /// The names of the merged values are guaranteed to be unique via the use of
    /// [`Function::new_unique_local_var`].
    ///
    /// Returns a map from the original pointers to the newly merged pointers.
    pub fn merge_locals_from(
        &self,
        context: &mut Context,
        other: Function,
    ) -> HashMap<LocalVar, LocalVar> {
        let mut var_map = HashMap::new();
        let old_vars: Vec<(String, LocalVar, LocalVarContent)> = context.functions[other.0]
            .local_storage
            .iter()
            .map(|(name, var)| (name.clone(), *var, context.local_vars[var.0].clone()))
            .collect();
        for (name, old_var, old_var_content) in old_vars {
            let old_ty = old_var_content
                .ptr_ty
                .get_pointee_type(context)
                .expect("LocalVar types are always pointers.");
            let new_var = self.new_unique_local_var(
                context,
                name.clone(),
                old_ty,
                old_var_content.initializer,
                old_var_content.mutable,
            );
            var_map.insert(old_var, new_var);
        }
        var_map
    }

    /// Return an iterator to each block in this function.
    pub fn block_iter(&self, context: &Context) -> BlockIterator {
        BlockIterator::new(context, self)
    }

    /// Return an iterator to each instruction in each block in this function.
    ///
    /// This is a convenience method for when all instructions in a function need to be inspected.
    /// The instruction value is returned from the iterator along with the block it belongs to.
    pub fn instruction_iter<'a>(
        &self,
        context: &'a Context,
    ) -> impl Iterator<Item = (Block, Value)> + 'a {
        context.functions[self.0]
            .blocks
            .iter()
            .flat_map(move |block| {
                block
                    .instruction_iter(context)
                    .map(move |ins_val| (*block, ins_val))
            })
    }

    /// Replace a value with another within this function.
    ///
    /// This is a convenience method which iterates over this function's blocks and calls
    /// [`Block::replace_values`] in turn.
    ///
    /// `starting_block` is an optimisation for when the first possible reference to `old_val` is
    /// known.
    pub fn replace_values(
        &self,
        context: &mut Context,
        replace_map: &FxHashMap<Value, Value>,
        starting_block: Option<Block>,
    ) {
        let mut block_iter = self.block_iter(context).peekable();

        if let Some(ref starting_block) = starting_block {
            // Skip blocks until we hit the starting block.
            while block_iter
                .next_if(|block| block != starting_block)
                .is_some()
            {}
        }

        for block in block_iter {
            block.replace_values(context, replace_map);
        }
    }

    pub fn replace_value(
        &self,
        context: &mut Context,
        old_val: Value,
        new_val: Value,
        starting_block: Option<Block>,
    ) {
        let mut map = FxHashMap::<Value, Value>::default();
        map.insert(old_val, new_val);
        self.replace_values(context, &map, starting_block);
    }

    /// A graphviz dot graph of the control-flow-graph.
    pub fn dot_cfg(&self, context: &Context) -> String {
        let mut worklist = Vec::<Block>::new();
        let mut visited = FxHashSet::<Block>::default();
        let entry = self.get_entry_block(context);
        let mut res = format!("digraph {} {{\n", self.get_name(context));

        worklist.push(entry);
        while let Some(n) = worklist.pop() {
            visited.insert(n);
            for BranchToWithArgs { block: n_succ, .. } in n.successors(context) {
                let _ = writeln!(
                    res,
                    "\t{} -> {}\n",
                    n.get_label(context),
                    n_succ.get_label(context)
                );
                if !visited.contains(&n_succ) {
                    worklist.push(n_succ);
                }
            }
        }

        res += "}\n";
        res
    }
}

/// An iterator over each [`Function`] in a [`Module`].
pub struct FunctionIterator {
    functions: Vec<slotmap::DefaultKey>,
    next: usize,
}

impl FunctionIterator {
    /// Return a new iterator for the functions in `module`.
    pub fn new(context: &Context, module: &Module) -> FunctionIterator {
        // Copy all the current modules indices, so they may be modified in the context during
        // iteration.
        FunctionIterator {
            functions: context.modules[module.0]
                .functions
                .iter()
                .map(|func| func.0)
                .collect(),
            next: 0,
        }
    }
}

impl Iterator for FunctionIterator {
    type Item = Function;

    fn next(&mut self) -> Option<Function> {
        if self.next < self.functions.len() {
            let idx = self.next;
            self.next += 1;
            Some(Function(self.functions[idx]))
        } else {
            None
        }
    }
}