sway_ir/analysis/memory_utils.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
//! An analysis to compute symbols that escape out from a function.
//! This could be into another function, or via `ptr_to_int` etc.
//! Any transformations involving such symbols are unsafe.
use indexmap::IndexSet;
use rustc_hash::FxHashSet;
use sway_types::{FxIndexMap, FxIndexSet};
use crate::{
AnalysisResult, AnalysisResultT, AnalysisResults, BlockArgument, Context, FuelVmInstruction,
Function, InstOp, Instruction, IrError, LocalVar, Pass, PassMutability, ScopedPass, Type,
Value, ValueDatum,
};
pub const ESCAPED_SYMBOLS_NAME: &str = "escaped-symbols";
pub fn create_escaped_symbols_pass() -> Pass {
Pass {
name: ESCAPED_SYMBOLS_NAME,
descr: "Symbols that escape or cannot be analyzed",
deps: vec![],
runner: ScopedPass::FunctionPass(PassMutability::Analysis(compute_escaped_symbols_pass)),
}
}
#[derive(Debug, Eq, PartialEq, Copy, Clone, Hash)]
pub enum Symbol {
Local(LocalVar),
Arg(BlockArgument),
}
impl Symbol {
pub fn get_type(&self, context: &Context) -> Type {
match self {
Symbol::Local(l) => l.get_type(context),
Symbol::Arg(ba) => ba.ty,
}
}
pub fn _get_name(&self, context: &Context, function: Function) -> String {
match self {
Symbol::Local(l) => function.lookup_local_name(context, l).unwrap().clone(),
Symbol::Arg(ba) => format!("{}[{}]", ba.block.get_label(context), ba.idx),
}
}
}
/// Get [Symbol]s, both [Symbol::Local]s and [Symbol::Arg]s, reachable
/// from the `val` via chain of [InstOp::GetElemPtr] (GEP) instructions.
/// A `val` can, via GEP instructions, refer indirectly to none, or one
/// or more symbols.
///
/// If the `val` is not a pointer, an empty set is returned.
///
/// Note that this function does not return [Symbol]s potentially reachable
/// via referencing (`&`), dereferencing (`*`), and raw pointers (`__addr_of`)
/// and is thus suitable for all IR analysis and manipulation that deals
/// strictly with GEP access.
///
/// To acquire all [Symbol]s reachable from the `val`, use [get_referred_symbols] instead.
pub fn get_gep_referred_symbols(context: &Context, val: Value) -> FxIndexSet<Symbol> {
match get_symbols(context, val, true) {
ReferredSymbols::Complete(symbols) => symbols,
_ => unreachable!(
"In the case of GEP access, the set of returned symbols is always complete."
),
}
}
/// Provides [Symbol]s, both [Symbol::Local]s and [Symbol::Arg]s, reachable
/// from a certain [Value] via chain of [InstOp::GetElemPtr] (GEP) instructions
/// or via [InstOp::IntToPtr] and [InstOp::PtrToInt] instruction patterns
/// specific to references, both referencing (`&`) and dereferencing (`*`),
/// and raw pointers, via `__addr_of`.
pub enum ReferredSymbols {
/// Guarantees that all [Symbol]s reachable from the particular [Value]
/// are collected, thus, that there are no escapes or pointer accesses
/// in the scope that _might_ result in symbols indirectly related to
/// the [Value] but not reachable only via GEP, or references, or
/// raw pointers only.
Complete(FxIndexSet<Symbol>),
/// Denotes that there _might_ be [Symbol]s out of returned ones that
/// are related to the particular [Value], but not reachable only via GEP,
/// or references, or raw pointers.
Incomplete(FxIndexSet<Symbol>),
}
impl ReferredSymbols {
pub fn new(is_complete: bool, symbols: FxIndexSet<Symbol>) -> Self {
if is_complete {
Self::Complete(symbols)
} else {
Self::Incomplete(symbols)
}
}
/// Returns the referred [Symbol]s and the information if they are
/// complete (true) or incomplete (false).
pub fn consume(self) -> (bool, FxIndexSet<Symbol>) {
let is_complete = matches!(self, ReferredSymbols::Complete(_));
let syms = match self {
ReferredSymbols::Complete(syms) | ReferredSymbols::Incomplete(syms) => syms,
};
(is_complete, syms)
}
}
/// Get [Symbol]s, both [Symbol::Local]s and [Symbol::Arg]s, reachable
/// from the `val` via chain of [InstOp::GetElemPtr] (GEP) instructions
/// or via [InstOp::IntToPtr] and [InstOp::PtrToInt] instruction patterns
/// specific to references, both referencing (`&`) and dereferencing (`*`),
/// and raw pointers, via `__addr_of`.
/// A `val` can, via these instructions, refer indirectly to none, or one
/// or more symbols.
///
/// Note that *this function does not perform any escape analysis*. E.g., if a
/// local symbol gets passed by `raw_ptr` or `&T` to a function and returned
/// back from the function via the same `raw_ptr` or `&T` the value returned
/// from the function will not be tracked back to the original symbol and the
/// symbol will not be collected as referred.
///
/// This means that, even if the result contains [Symbol]s, it _might_ be that
/// there are still other [Symbol]s in scope related to the `val`. E.g., in case
/// of branching, where the first branch directly returns `& local_var_a`
/// and the second branch, indirectly over a function call as explained above,
/// `& local_var_b`, only the `local_var_a` will be returned as a result.
///
/// Therefore, the function returns the [ReferredSymbols] enum to denote
/// if the returned set of symbols is guaranteed to be complete, or if it is
/// incomplete.
///
/// If the `val` is not a pointer, an empty set is returned and marked as
/// [ReferredSymbols::Complete].
pub fn get_referred_symbols(context: &Context, val: Value) -> ReferredSymbols {
get_symbols(context, val, false)
}
/// Get [Symbol]s, both [Symbol::Local]s and [Symbol::Arg]s, reachable
/// from the `val`.
///
/// If `gep_only` is `true` only the [Symbol]s reachable via GEP instructions
/// are returned. Otherwise, the result also contains [Symbol]s reachable
/// via referencing (`&`) and dereferencing (`*`).
///
/// If the `val` is not a pointer, an empty set is returned and marked as
/// [ReferredSymbols::Complete].
fn get_symbols(context: &Context, val: Value, gep_only: bool) -> ReferredSymbols {
// The input to this recursive function is always a pointer.
// The function tracks backwards where the pointer is coming from.
fn get_symbols_rec(
context: &Context,
symbols: &mut FxIndexSet<Symbol>,
visited: &mut FxHashSet<Value>,
ptr: Value,
gep_only: bool,
is_complete: &mut bool,
) {
fn get_argument_symbols(
context: &Context,
symbols: &mut FxIndexSet<Symbol>,
visited: &mut FxHashSet<Value>,
arg: BlockArgument,
gep_only: bool,
is_complete: &mut bool,
) {
if arg.block.get_label(context) == "entry" {
symbols.insert(Symbol::Arg(arg));
} else {
arg.block
.pred_iter(context)
.map(|pred| arg.get_val_coming_from(context, pred).unwrap())
.for_each(|v| {
get_symbols_rec(context, symbols, visited, v, gep_only, is_complete)
})
}
}
fn get_symbols_from_u64_address_argument(
context: &Context,
symbols: &mut FxIndexSet<Symbol>,
visited: &mut FxHashSet<Value>,
u64_address_arg: BlockArgument,
is_complete: &mut bool,
) {
if u64_address_arg.block.get_label(context) == "entry" {
// The u64 address is coming from a function argument.
// Same as in the case of a pointer coming from a function argument,
// we collect it.
symbols.insert(Symbol::Arg(u64_address_arg));
} else {
u64_address_arg
.block
.pred_iter(context)
.map(|pred| u64_address_arg.get_val_coming_from(context, pred).unwrap())
.for_each(|v| {
get_symbols_from_u64_address_rec(context, symbols, visited, v, is_complete)
})
}
}
// The input to this recursive function is always a `u64` holding an address.
// The below chain of instructions are specific to patterns where pointers
// are obtained from `u64` addresses and vice versa. This includes:
// - referencing and dereferencing
// - raw pointers (`__addr_of`)
// - GTF intrinsic
fn get_symbols_from_u64_address_rec(
context: &Context,
symbols: &mut FxIndexSet<Symbol>,
visited: &mut FxHashSet<Value>,
u64_address: Value,
is_complete: &mut bool,
) {
match context.values[u64_address.0].value {
// Follow the sources of the address, and for every source address,
// recursively come back to this function.
ValueDatum::Argument(arg) => get_symbols_from_u64_address_argument(
context,
symbols,
visited,
arg,
is_complete,
),
// 1. Patterns related to references and raw pointers.
ValueDatum::Instruction(Instruction {
// The address is coming from a `raw_pointer` or `&T` variable.
op: InstOp::Load(_loaded_from),
..
}) => {
// TODO: https://github.com/FuelLabs/sway/issues/6065
// We want to track sources of loaded addresses.
// Currently we don't and simply mark the result as incomplete.
*is_complete = false;
}
ValueDatum::Instruction(Instruction {
op: InstOp::PtrToInt(ptr_value, _),
..
}) => get_symbols_rec(context, symbols, visited, ptr_value, false, is_complete),
// 2. The address is coming from a GTF instruction.
ValueDatum::Instruction(Instruction {
// There cannot be a symbol behind it, and so the returned set is complete.
op: InstOp::FuelVm(FuelVmInstruction::Gtf { .. }),
..
}) => (),
// In other cases, e.g., getting the integer address from an unsafe pointer
// arithmetic, or as a function result, etc. we bail out and mark the
// collection as not being guaranteed to be a complete set of all referred symbols.
_ => {
*is_complete = false;
}
}
}
if visited.contains(&ptr) {
return;
}
visited.insert(ptr);
match context.values[ptr.0].value {
ValueDatum::Instruction(Instruction {
op: InstOp::GetLocal(local),
..
}) => {
symbols.insert(Symbol::Local(local));
}
ValueDatum::Instruction(Instruction {
op: InstOp::GetElemPtr { base, .. },
..
}) => get_symbols_rec(context, symbols, visited, base, gep_only, is_complete),
ValueDatum::Instruction(Instruction {
op: InstOp::IntToPtr(u64_address, _),
..
}) if !gep_only => get_symbols_from_u64_address_rec(
context,
symbols,
visited,
u64_address,
is_complete,
),
// We've reached a configurable at the top of the chain.
// There cannot be a symbol behind it, and so the returned set is complete.
ValueDatum::Instruction(Instruction {
op: InstOp::GetConfig(_, _),
..
}) if !gep_only => (),
// Note that in this case, the pointer itself is coming from a `Load`,
// and not an address. So, we just continue following the pointer.
ValueDatum::Instruction(Instruction {
op: InstOp::Load(loaded_from),
..
}) if !gep_only => get_symbols_rec(
context,
symbols,
visited,
loaded_from,
gep_only,
is_complete,
),
ValueDatum::Instruction(Instruction {
op: InstOp::CastPtr(ptr_to_cast, _),
..
}) if !gep_only => get_symbols_rec(
context,
symbols,
visited,
ptr_to_cast,
gep_only,
is_complete,
),
ValueDatum::Argument(arg) => {
get_argument_symbols(context, symbols, visited, arg, gep_only, is_complete)
}
// We've reached a constant at the top of the chain.
// There cannot be a symbol behind it, and so the returned set is complete.
ValueDatum::Constant(_) if !gep_only => (),
_ if !gep_only => {
// In other cases, e.g., getting the pointer from an ASM block,
// or as a function result, etc., we cannot track the value up the chain
// and cannot guarantee that the value is not coming from some of the symbols.
// So, we bail out and mark the collection as not being guaranteed to be
// a complete set of all referred symbols.
*is_complete = false;
}
// In the case of GEP only access, the returned set is always complete.
_ => (),
}
}
if !val.get_type(context).map_or(false, |t| t.is_ptr(context)) {
return ReferredSymbols::new(true, IndexSet::default());
}
let mut visited = FxHashSet::default();
let mut symbols = IndexSet::default();
let mut is_complete = true;
get_symbols_rec(
context,
&mut symbols,
&mut visited,
val,
gep_only,
&mut is_complete,
);
ReferredSymbols::new(is_complete, symbols)
}
pub fn get_gep_symbol(context: &Context, val: Value) -> Option<Symbol> {
let syms = get_gep_referred_symbols(context, val);
(syms.len() == 1)
.then(|| syms.iter().next().cloned())
.flatten()
}
/// Return [Symbol] referred by `val` if there is _exactly one_ symbol referred,
/// or `None` if there are no [Symbol]s referred or if there is more then one
/// referred.
pub fn get_referred_symbol(context: &Context, val: Value) -> Option<Symbol> {
let syms = get_referred_symbols(context, val);
match syms {
ReferredSymbols::Complete(syms) => (syms.len() == 1)
.then(|| syms.iter().next().cloned())
.flatten(),
// It might be that we have more than one referred symbol here.
ReferredSymbols::Incomplete(_) => None,
}
}
pub enum EscapedSymbols {
/// Guarantees that all escaping [Symbol]s are collected.
Complete(FxHashSet<Symbol>),
/// Denotes that there _might_ be additional escaping [Symbol]s
/// out of the collected ones.
Incomplete(FxHashSet<Symbol>),
}
impl AnalysisResultT for EscapedSymbols {}
pub fn compute_escaped_symbols_pass(
context: &Context,
_: &AnalysisResults,
function: Function,
) -> Result<AnalysisResult, IrError> {
Ok(Box::new(compute_escaped_symbols(context, &function)))
}
pub fn compute_escaped_symbols(context: &Context, function: &Function) -> EscapedSymbols {
let add_from_val = |result: &mut FxHashSet<Symbol>, val: &Value, is_complete: &mut bool| {
let (complete, syms) = get_referred_symbols(context, *val).consume();
*is_complete &= complete;
syms.iter().for_each(|s| {
result.insert(*s);
});
};
let mut result = FxHashSet::default();
let mut is_complete = true;
for (_block, inst) in function.instruction_iter(context) {
match &inst.get_instruction(context).unwrap().op {
InstOp::AsmBlock(_, args) => {
for arg_init in args.iter().filter_map(|arg| arg.initializer) {
add_from_val(&mut result, &arg_init, &mut is_complete)
}
}
InstOp::UnaryOp { .. } => (),
InstOp::BinaryOp { .. } => (),
InstOp::BitCast(_, _) => (),
InstOp::Branch(_) => (),
InstOp::Call(_, args) => args
.iter()
.for_each(|v| add_from_val(&mut result, v, &mut is_complete)),
InstOp::CastPtr(_, _) => (),
InstOp::Cmp(_, _, _) => (),
InstOp::ConditionalBranch { .. } => (),
InstOp::ContractCall { params, .. } => {
add_from_val(&mut result, params, &mut is_complete)
}
InstOp::FuelVm(_) => (),
InstOp::GetLocal(_) => (),
InstOp::GetConfig(_, _) => (),
InstOp::GetElemPtr { .. } => (),
InstOp::IntToPtr(_, _) => (),
InstOp::Load(_) => (),
InstOp::MemCopyBytes { .. } => (),
InstOp::MemCopyVal { .. } => (),
InstOp::Nop => (),
InstOp::PtrToInt(v, _) => add_from_val(&mut result, v, &mut is_complete),
InstOp::Ret(_, _) => (),
InstOp::Store { .. } => (),
}
}
if is_complete {
EscapedSymbols::Complete(result)
} else {
EscapedSymbols::Incomplete(result)
}
}
/// Pointers that may possibly be loaded from the instruction `inst`.
pub fn get_loaded_ptr_values(context: &Context, inst: Value) -> Vec<Value> {
match &inst.get_instruction(context).unwrap().op {
InstOp::UnaryOp { .. }
| InstOp::BinaryOp { .. }
| InstOp::BitCast(_, _)
| InstOp::Branch(_)
| InstOp::ConditionalBranch { .. }
| InstOp::Cmp(_, _, _)
| InstOp::Nop
| InstOp::CastPtr(_, _)
| InstOp::GetLocal(_)
| InstOp::GetConfig(_, _)
| InstOp::GetElemPtr { .. }
| InstOp::IntToPtr(_, _) => vec![],
InstOp::PtrToInt(src_val_ptr, _) => vec![*src_val_ptr],
InstOp::ContractCall {
params,
coins,
asset_id,
..
} => vec![*params, *coins, *asset_id],
InstOp::Call(_, args) => args.clone(),
InstOp::AsmBlock(_, args) => args.iter().filter_map(|val| val.initializer).collect(),
InstOp::MemCopyBytes { src_val_ptr, .. }
| InstOp::MemCopyVal { src_val_ptr, .. }
| InstOp::Ret(src_val_ptr, _)
| InstOp::Load(src_val_ptr)
| InstOp::FuelVm(FuelVmInstruction::Log {
log_val: src_val_ptr,
..
})
| InstOp::FuelVm(FuelVmInstruction::StateLoadWord(src_val_ptr))
| InstOp::FuelVm(FuelVmInstruction::StateStoreWord {
key: src_val_ptr, ..
})
| InstOp::FuelVm(FuelVmInstruction::StateLoadQuadWord {
key: src_val_ptr, ..
})
| InstOp::FuelVm(FuelVmInstruction::StateClear {
key: src_val_ptr, ..
}) => vec![*src_val_ptr],
InstOp::FuelVm(FuelVmInstruction::StateStoreQuadWord {
stored_val: memopd1,
key: memopd2,
..
})
| InstOp::FuelVm(FuelVmInstruction::Smo {
recipient: memopd1,
message: memopd2,
..
}) => vec![*memopd1, *memopd2],
InstOp::Store { dst_val_ptr: _, .. } => vec![],
InstOp::FuelVm(FuelVmInstruction::Gtf { .. })
| InstOp::FuelVm(FuelVmInstruction::ReadRegister(_))
| InstOp::FuelVm(FuelVmInstruction::Revert(_) | FuelVmInstruction::JmpMem) => vec![],
InstOp::FuelVm(FuelVmInstruction::WideUnaryOp { arg, .. }) => vec![*arg],
InstOp::FuelVm(FuelVmInstruction::WideBinaryOp { arg1, arg2, .. })
| InstOp::FuelVm(FuelVmInstruction::WideCmpOp { arg1, arg2, .. }) => {
vec![*arg1, *arg2]
}
InstOp::FuelVm(FuelVmInstruction::WideModularOp {
arg1, arg2, arg3, ..
}) => vec![*arg1, *arg2, *arg3],
InstOp::FuelVm(FuelVmInstruction::Retd { ptr, .. }) => vec![*ptr],
}
}
/// [Symbol]s that may possibly, directly or indirectly, be loaded from the instruction `inst`.
pub fn get_loaded_symbols(context: &Context, inst: Value) -> ReferredSymbols {
let mut res = IndexSet::default();
let mut is_complete = true;
for val in get_loaded_ptr_values(context, inst) {
let (complete, syms) = get_referred_symbols(context, val).consume();
is_complete &= complete;
for sym in syms {
res.insert(sym);
}
}
ReferredSymbols::new(is_complete, res)
}
/// Pointers that may possibly be stored to the instruction `inst`.
pub fn get_stored_ptr_values(context: &Context, inst: Value) -> Vec<Value> {
match &inst.get_instruction(context).unwrap().op {
InstOp::UnaryOp { .. }
| InstOp::BinaryOp { .. }
| InstOp::BitCast(_, _)
| InstOp::Branch(_)
| InstOp::ConditionalBranch { .. }
| InstOp::Cmp(_, _, _)
| InstOp::Nop
| InstOp::PtrToInt(_, _)
| InstOp::Ret(_, _)
| InstOp::CastPtr(_, _)
| InstOp::GetLocal(_)
| InstOp::GetConfig(_, _)
| InstOp::GetElemPtr { .. }
| InstOp::IntToPtr(_, _) => vec![],
InstOp::ContractCall { params, .. } => vec![*params],
InstOp::Call(_, args) => args.clone(),
InstOp::AsmBlock(_, args) => args.iter().filter_map(|val| val.initializer).collect(),
InstOp::MemCopyBytes { dst_val_ptr, .. }
| InstOp::MemCopyVal { dst_val_ptr, .. }
| InstOp::Store { dst_val_ptr, .. } => vec![*dst_val_ptr],
InstOp::Load(_) => vec![],
InstOp::FuelVm(vmop) => match vmop {
FuelVmInstruction::Gtf { .. }
| FuelVmInstruction::Log { .. }
| FuelVmInstruction::ReadRegister(_)
| FuelVmInstruction::Revert(_)
| FuelVmInstruction::JmpMem
| FuelVmInstruction::Smo { .. }
| FuelVmInstruction::StateClear { .. } => vec![],
FuelVmInstruction::StateLoadQuadWord { load_val, .. } => vec![*load_val],
FuelVmInstruction::StateLoadWord(_) | FuelVmInstruction::StateStoreWord { .. } => {
vec![]
}
FuelVmInstruction::StateStoreQuadWord { stored_val: _, .. } => vec![],
FuelVmInstruction::WideUnaryOp { result, .. }
| FuelVmInstruction::WideBinaryOp { result, .. }
| FuelVmInstruction::WideModularOp { result, .. } => vec![*result],
FuelVmInstruction::WideCmpOp { .. } => vec![],
_ => vec![],
},
}
}
/// [Symbol]s that may possibly, directly or indirectly, be stored to the instruction `inst`.
pub fn get_stored_symbols(context: &Context, inst: Value) -> ReferredSymbols {
let mut res = IndexSet::default();
let mut is_complete = true;
for val in get_stored_ptr_values(context, inst) {
let (complete, syms) = get_referred_symbols(context, val).consume();
is_complete &= complete;
for sym in syms {
res.insert(sym);
}
}
ReferredSymbols::new(is_complete, res)
}
/// Combine a series of GEPs into one.
pub fn combine_indices(context: &Context, val: Value) -> Option<Vec<Value>> {
match &context.values[val.0].value {
ValueDatum::Instruction(Instruction {
op: InstOp::GetLocal(_),
..
}) => Some(vec![]),
ValueDatum::Instruction(Instruction {
op:
InstOp::GetElemPtr {
base,
elem_ptr_ty: _,
indices,
},
..
}) => {
let mut base_indices = combine_indices(context, *base)?;
base_indices.append(&mut indices.clone());
Some(base_indices)
}
ValueDatum::Argument(_) => Some(vec![]),
_ => None,
}
}
/// Given a memory pointer instruction, compute the offset of indexed element,
/// for each symbol that it may alias to.
/// If for any symbol we can't compute it, return None.
pub fn get_memory_offsets(context: &Context, val: Value) -> Option<FxIndexMap<Symbol, u64>> {
let syms = get_gep_referred_symbols(context, val);
let mut res: FxIndexMap<Symbol, u64> = FxIndexMap::default();
for sym in syms {
let offset = sym
.get_type(context)
.get_pointee_type(context)?
.get_value_indexed_offset(context, &combine_indices(context, val)?)?;
res.insert(sym, offset);
}
Some(res)
}
/// Can memory ranges [val1, val1+len1] and [val2, val2+len2] overlap?
/// Conservatively returns true if cannot statically determine.
pub fn may_alias(context: &Context, val1: Value, len1: u64, val2: Value, len2: u64) -> bool {
let (Some(mem_offsets_1), Some(mem_offsets_2)) = (
get_memory_offsets(context, val1),
get_memory_offsets(context, val2),
) else {
return true;
};
for (sym1, off1) in mem_offsets_1 {
if let Some(off2) = mem_offsets_2.get(&sym1) {
// does off1 + len1 overlap with off2 + len2?
if (off1 <= *off2 && (off1 + len1 > *off2)) || (*off2 <= off1 && (*off2 + len2 > off1))
{
return true;
}
}
}
false
}
/// Are memory ranges [val1, val1+len1] and [val2, val2+len2] exactly the same?
/// Conservatively returns false if cannot statically determine.
pub fn must_alias(context: &Context, val1: Value, len1: u64, val2: Value, len2: u64) -> bool {
let (Some(mem_offsets_1), Some(mem_offsets_2)) = (
get_memory_offsets(context, val1),
get_memory_offsets(context, val2),
) else {
return false;
};
if mem_offsets_1.len() != 1 || mem_offsets_2.len() != 1 {
return false;
}
let (sym1, off1) = mem_offsets_1.iter().next().unwrap();
let (sym2, off2) = mem_offsets_2.iter().next().unwrap();
// does off1 + len1 overlap with off2 + len2?
sym1 == sym2 && off1 == off2 && len1 == len2
}
/// For a pointer argument `ptr_val`, what's the size of its pointee.
pub fn pointee_size(context: &Context, ptr_val: Value) -> u64 {
ptr_val
.get_type(context)
.unwrap()
.get_pointee_type(context)
.expect("Expected arg to be a pointer")
.size(context)
.in_bytes()
}