sway_ir/block.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
//! Represents a 'basic block' of [`Instruction`]s in a control flow graph.
//!
//! [`Block`]s contain zero or more _non-terminating_ instructions and at most one _terminating_
//! instruction or _terminator_. Terminators are either branches or a return instruction and are
//! the last instruction in the block.
//!
//! Blocks also contain a single 'phi' instruction at its start. In
//! [SSA](https://en.wikipedia.org/wiki/Static_single_assignment_form) form 'phi' instructions are
//! used to merge values from preceding blocks.
//!
//! Every [`Function`] has at least one block, the first of which is usually labeled `entry`.
use rustc_hash::{FxHashMap, FxHashSet};
use crate::{
context::Context,
error::IrError,
function::Function,
instruction::{FuelVmInstruction, InstOp},
value::{Value, ValueDatum},
BranchToWithArgs, DebugWithContext, Instruction, InstructionInserter, InstructionIterator,
Module, Type,
};
/// A wrapper around an [ECS](https://github.com/orlp/slotmap) handle into the
/// [`Context`].
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, DebugWithContext)]
pub struct Block(pub slotmap::DefaultKey);
impl Block {
pub fn get_module<'a>(&self, context: &'a Context) -> &'a Module {
let f = context.blocks[self.0].function;
&context.functions[f.0].module
}
}
#[doc(hidden)]
pub struct BlockContent {
/// Block label, useful for printing.
pub label: Label,
/// The function containing this block.
pub function: Function,
/// List of instructions in the block.
pub(crate) instructions: Vec<Value>,
/// Block arguments: Another form of SSA PHIs.
pub args: Vec<Value>,
/// CFG predecessors
pub preds: FxHashSet<Block>,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, DebugWithContext)]
pub struct BlockArgument {
/// The block of which this is an argument.
pub block: Block,
/// idx'th argument of the block.
pub idx: usize,
pub ty: Type,
}
impl BlockArgument {
/// Get the actual parameter passed to this block argument from `from_block`.
pub fn get_val_coming_from(&self, context: &Context, from_block: &Block) -> Option<Value> {
for BranchToWithArgs {
block: succ_block,
args,
} in from_block.successors(context)
{
if succ_block == self.block {
return Some(args[self.idx]);
}
}
None
}
}
/// Each block may be explicitly named. A [`Label`] is a simple `String` synonym.
pub type Label = String;
impl Block {
/// Return a new block handle.
///
/// Creates a new Block belonging to `function` in the context and returns its handle. `label`
/// is optional and is used only when printing the IR.
pub fn new(context: &mut Context, function: Function, label: Option<String>) -> Block {
let label = function.get_unique_label(context, label);
let content = BlockContent {
label,
function,
instructions: vec![],
args: vec![],
preds: FxHashSet::default(),
};
Block(context.blocks.insert(content))
}
/// Get the parent function for this block.
pub fn get_function(&self, context: &Context) -> Function {
context.blocks[self.0].function
}
/// Create a new [`InstructionInserter`] to more easily append instructions to this block.
pub fn append<'a, 'eng>(
&self,
context: &'a mut Context<'eng>,
) -> InstructionInserter<'a, 'eng> {
InstructionInserter::new(context, *self, crate::InsertionPosition::End)
}
/// Get the label of this block. If it wasn't given one upon creation it will be a generated
/// label.
pub fn get_label(&self, context: &Context) -> String {
context.blocks[self.0].label.clone()
}
/// Set the label of this block. If the label isn't unique it will be made so.
pub fn set_label(&self, context: &mut Context, new_label: Option<Label>) {
let unique_label = self
.get_function(context)
.get_unique_label(context, new_label);
context.blocks[self.0].label = unique_label;
}
/// Get the number of instructions in this block.
pub fn num_instructions(&self, context: &Context) -> usize {
context.blocks[self.0].instructions.len()
}
/// Get the i'th block arg.
pub fn get_arg(&self, context: &Context, index: usize) -> Option<Value> {
context.blocks[self.0].args.get(index).cloned()
}
/// Get the number of predecessor blocks, i.e., blocks which branch to this one.
pub fn num_predecessors(&self, context: &Context) -> usize {
context.blocks[self.0].preds.len()
}
/// Add a new block argument of type `ty`. Returns its index.
pub fn new_arg(&self, context: &mut Context, ty: Type) -> usize {
let idx = context.blocks[self.0].args.len();
let arg_val = Value::new_argument(
context,
BlockArgument {
block: *self,
idx,
ty,
},
);
context.blocks[self.0].args.push(arg_val);
idx
}
pub fn set_arg(&self, context: &mut Context, arg: Value) {
match context.values[arg.0].value {
ValueDatum::Argument(BlockArgument { block, idx, ty: _ })
if block == *self && idx < context.blocks[self.0].args.len() =>
{
context.blocks[self.0].args[idx] = arg;
}
_ => panic!("Inconsistent block argument being set"),
}
}
/// Add a block argument, asserts that `arg` is suitable here.
pub fn add_arg(&self, context: &mut Context, arg: Value) {
match context.values[arg.0].value {
ValueDatum::Argument(BlockArgument { block, idx, ty: _ })
if block == *self && idx == context.blocks[self.0].args.len() =>
{
context.blocks[self.0].args.push(arg);
}
_ => panic!("Inconsistent block argument being added"),
}
}
/// Get an iterator over this block's args.
pub fn arg_iter<'a>(&'a self, context: &'a Context) -> impl Iterator<Item = &Value> {
context.blocks[self.0].args.iter()
}
/// How many args does this block have?
pub fn num_args(&self, context: &Context) -> usize {
context.blocks[self.0].args.len()
}
/// Get an iterator over this block's predecessor blocks.
pub fn pred_iter<'a>(&'a self, context: &'a Context) -> impl Iterator<Item = &Block> {
context.blocks[self.0].preds.iter()
}
/// Add `from_block` to the set of predecessors of this block.
pub fn add_pred(&self, context: &mut Context, from_block: &Block) {
context.blocks[self.0].preds.insert(*from_block);
}
/// Remove `from_block` from the set of predecessors of this block.
pub fn remove_pred(&self, context: &mut Context, from_block: &Block) {
context.blocks[self.0].preds.remove(from_block);
}
/// Replace a `old_source` with `new_source` as a predecessor.
pub fn replace_pred(&self, context: &mut Context, old_source: &Block, new_source: &Block) {
self.remove_pred(context, old_source);
self.add_pred(context, new_source);
}
/// Get instruction at position `pos`.
///
/// Returns `None` if block is empty or if `pos` is out of bounds.
pub fn get_instruction_at(&self, context: &Context, pos: usize) -> Option<Value> {
context.blocks[self.0].instructions.get(pos).cloned()
}
/// Get a reference to the final instruction in the block, provided it is a terminator.
///
/// Returns `None` if the final instruction is not a terminator. This can only happen during IR
/// generation when the block is still being populated.
pub fn get_terminator<'a>(&self, context: &'a Context) -> Option<&'a Instruction> {
context.blocks[self.0].instructions.last().and_then(|val| {
// It's guaranteed to be an instruction value.
if let ValueDatum::Instruction(term_inst) = &context.values[val.0].value {
if term_inst.op.is_terminator() {
Some(term_inst)
} else {
None
}
} else {
None
}
})
}
/// Get a mutable reference to the final instruction in the block, provided it is a terminator.
///
/// Returns `None` if the final instruction is not a terminator. This can only happen during IR
/// generation when the block is still being populated.
pub fn get_terminator_mut<'a>(&self, context: &'a mut Context) -> Option<&'a mut Instruction> {
context.blocks[self.0].instructions.last().and_then(|val| {
// It's guaranteed to be an instruction value.
if let ValueDatum::Instruction(term_inst) = &mut context.values[val.0].value {
if term_inst.op.is_terminator() {
Some(term_inst)
} else {
None
}
} else {
None
}
})
}
/// Get the CFG successors (and the parameters passed to them) of this block.
pub(super) fn successors<'a>(&'a self, context: &'a Context) -> Vec<BranchToWithArgs> {
match self.get_terminator(context) {
Some(Instruction {
op:
InstOp::ConditionalBranch {
true_block,
false_block,
..
},
..
}) => vec![true_block.clone(), false_block.clone()],
Some(Instruction {
op: InstOp::Branch(block),
..
}) => vec![block.clone()],
_otherwise => Vec::new(),
}
}
/// For a particular successor (if it indeed is one), get the arguments passed.
pub fn get_succ_params(&self, context: &Context, succ: &Block) -> Vec<Value> {
self.successors(context)
.iter()
.find(|branch| &branch.block == succ)
.map_or(vec![], |branch| branch.args.clone())
}
/// For a particular successor (if it indeed is one), get a mut ref to parameters passed.
pub fn get_succ_params_mut<'a>(
&'a self,
context: &'a mut Context,
succ: &Block,
) -> Option<&'a mut Vec<Value>> {
match self.get_terminator_mut(context) {
Some(Instruction {
op:
InstOp::ConditionalBranch {
true_block,
false_block,
..
},
..
}) => {
if true_block.block == *succ {
Some(&mut true_block.args)
} else if false_block.block == *succ {
Some(&mut false_block.args)
} else {
None
}
}
Some(Instruction {
op: InstOp::Branch(block),
..
}) if block.block == *succ => Some(&mut block.args),
_ => None,
}
}
/// Replace successor `old_succ` with `new_succ`.
/// Updates `preds` of both `old_succ` and `new_succ`.
pub(super) fn replace_successor(
&self,
context: &mut Context,
old_succ: Block,
new_succ: Block,
new_params: Vec<Value>,
) {
let mut modified = false;
if let Some(term) = self.get_terminator_mut(context) {
match term {
Instruction {
op:
InstOp::ConditionalBranch {
true_block:
BranchToWithArgs {
block: true_block,
args: true_opds,
},
false_block:
BranchToWithArgs {
block: false_block,
args: false_opds,
},
cond_value: _,
},
..
} => {
if old_succ == *true_block {
modified = true;
*true_block = new_succ;
true_opds.clone_from(&new_params);
}
if old_succ == *false_block {
modified = true;
*false_block = new_succ;
*false_opds = new_params
}
}
Instruction {
op: InstOp::Branch(BranchToWithArgs { block, args }),
..
} if *block == old_succ => {
*block = new_succ;
*args = new_params;
modified = true;
}
_ => (),
}
}
if modified {
old_succ.remove_pred(context, self);
new_succ.add_pred(context, self);
}
}
/// Return whether this block is already terminated by non-branching instructions,
/// means with instructions that cause either revert, or local or context returns.
/// Those instructions are: [InstOp::Ret], [FuelVmInstruction::Retd],
/// [FuelVmInstruction::JmpMem], and [FuelVmInstruction::Revert]).
pub fn is_terminated_by_return_or_revert(&self, context: &Context) -> bool {
self.get_terminator(context).map_or(false, |i| {
matches!(
i,
Instruction {
op: InstOp::Ret(..)
| InstOp::FuelVm(
FuelVmInstruction::Revert(..)
| FuelVmInstruction::JmpMem
| FuelVmInstruction::Retd { .. }
),
..
}
)
})
}
/// Replace a value within this block.
///
/// For every instruction within the block, any reference to `old_val` is replaced with
/// `new_val`.
pub fn replace_values(&self, context: &mut Context, replace_map: &FxHashMap<Value, Value>) {
for ins_idx in 0..context.blocks[self.0].instructions.len() {
let ins = context.blocks[self.0].instructions[ins_idx];
ins.replace_instruction_values(context, replace_map);
}
}
/// Remove an instruction from this block.
///
/// **NOTE:** We must be very careful! We mustn't remove the phi or the terminator. Some
/// extra checks should probably be performed here to avoid corruption! Ideally we use get a
/// user/uses system implemented. Using `Vec::remove()` is also O(n) which we may want to
/// avoid someday.
pub fn remove_instruction(&self, context: &mut Context, instr_val: Value) {
let ins = &mut context.blocks[self.0].instructions;
if let Some(pos) = ins.iter().position(|iv| *iv == instr_val) {
ins.remove(pos);
}
}
/// Remove an instruction at position `pos` from this block.
///
/// **NOTE:** We must be very careful! We mustn't remove the phi or the terminator. Some
/// extra checks should probably be performed here to avoid corruption! Ideally we use get a
/// user/uses system implemented. Using `Vec::remove()` is also O(n) which we may want to
/// avoid someday.
pub fn remove_instruction_at(&self, context: &mut Context, pos: usize) {
context.blocks[self.0].instructions.remove(pos);
}
/// Remove the last instruction in the block.
///
/// **NOTE:** The caller must be very careful if removing the terminator.
pub fn remove_last_instruction(&self, context: &mut Context) {
context.blocks[self.0].instructions.pop();
}
/// Remove instructions from block that satisfy a given predicate.
pub fn remove_instructions<T: Fn(Value) -> bool>(&self, context: &mut Context, pred: T) {
let ins = &mut context.blocks[self.0].instructions;
ins.retain(|value| !pred(*value));
}
/// Clear the current instruction list and take the one provided.
pub fn take_body(&self, context: &mut Context, new_insts: Vec<Value>) {
let _ = std::mem::replace(&mut (context.blocks[self.0].instructions), new_insts);
for inst in &context.blocks[self.0].instructions {
let ValueDatum::Instruction(inst) = &mut context.values[inst.0].value else {
continue;
};
inst.parent = *self;
}
}
/// Insert instruction(s) at the beginning of the block.
pub fn prepend_instructions(&self, context: &mut Context, mut insts: Vec<Value>) {
let block_ins = &mut context.blocks[self.0].instructions;
insts.append(block_ins);
context.blocks[self.0].instructions = insts;
}
/// Replace an instruction in this block with another. Will return a ValueNotFound on error.
/// Any use of the old instruction value will also be replaced by the new value throughout the
/// owning function if `replace_uses` is set.
pub fn replace_instruction(
&self,
context: &mut Context,
old_instr_val: Value,
new_instr_val: Value,
replace_uses: bool,
) -> Result<(), IrError> {
match context.blocks[self.0]
.instructions
.iter_mut()
.find(|instr_val| *instr_val == &old_instr_val)
{
None => Err(IrError::ValueNotFound(
"Attempting to replace instruction.".to_owned(),
)),
Some(instr_val) => {
*instr_val = new_instr_val;
if replace_uses {
self.get_function(context).replace_value(
context,
old_instr_val,
new_instr_val,
Some(*self),
);
}
Ok(())
}
}
}
/// Split the block into two.
///
/// This will create a new block and move the instructions at and following `split_idx` to it.
/// Returns both blocks.
pub fn split_at(&self, context: &mut Context, split_idx: usize) -> (Block, Block) {
let function = context.blocks[self.0].function;
if split_idx == 0 {
// We can just create a new empty block and put it before this one. We know that it
// will succeed because self is definitely in the function, so we can unwrap().
//
// If self is the entry block then for now we need to rename it from 'entry' and call
// our new block 'entry'.
let new_block_name = (*self == self.get_function(context).get_entry_block(context))
.then(|| {
self.set_label(context, None);
"entry".to_owned()
});
let new_block = function
.create_block_before(context, self, new_block_name)
.unwrap();
// Move the block arguments to the new block. We collect because we want to mutate next.
#[allow(clippy::needless_collect)]
let args: Vec<_> = self.arg_iter(context).copied().collect();
for arg in args.into_iter() {
match &mut context.values[arg.0].value {
ValueDatum::Argument(BlockArgument {
block,
idx: _,
ty: _,
}) => {
// We modify the Value in place to be a BlockArgument for the new block.
*block = new_block;
}
_ => unreachable!("Block arg value inconsistent"),
}
new_block.add_arg(context, arg);
}
context.blocks[self.0].args.clear();
(new_block, *self)
} else {
// Again, we know that it will succeed because self is definitely in the function, and
// so we can unwrap().
let new_block = function.create_block_after(context, self, None).unwrap();
// Split the instructions at the index and append them to the new block.
let mut tail_instructions = context.blocks[self.0].instructions.split_off(split_idx);
// Update the parent of tail_instructions.
for instr in &tail_instructions {
instr.get_instruction_mut(context).unwrap().parent = new_block;
}
context.blocks[new_block.0]
.instructions
.append(&mut tail_instructions);
// If the terminator of the old block (now the new block) was a branch then we need to
// update the destination block's preds.
//
// Copying the candidate blocks and putting them in a vector to avoid borrowing context
// as immutable and then mutable in the loop body.
for to_block in match new_block.get_terminator(context) {
Some(Instruction {
op: InstOp::Branch(to_block),
..
}) => {
vec![to_block.block]
}
Some(Instruction {
op:
InstOp::ConditionalBranch {
true_block,
false_block,
..
},
..
}) => {
vec![true_block.block, false_block.block]
}
_ => Vec::new(),
} {
to_block.replace_pred(context, self, &new_block);
}
(*self, new_block)
}
}
/// Return an instruction iterator for each instruction in this block.
pub fn instruction_iter(&self, context: &Context) -> InstructionIterator {
InstructionIterator::new(context, self)
}
}
/// An iterator over each block in a [`Function`].
pub struct BlockIterator {
blocks: Vec<slotmap::DefaultKey>,
next: usize,
}
impl BlockIterator {
/// Return a new iterator for each block in `function`.
pub fn new(context: &Context, function: &Function) -> Self {
// Copy all the current block indices, so they may be modified in the context during
// iteration.
BlockIterator {
blocks: context.functions[function.0]
.blocks
.iter()
.map(|block| block.0)
.collect(),
next: 0,
}
}
}
impl Iterator for BlockIterator {
type Item = Block;
fn next(&mut self) -> Option<Block> {
if self.next < self.blocks.len() {
let idx = self.next;
self.next += 1;
Some(Block(self.blocks[idx]))
} else {
None
}
}
}