sway_ir/
irtype.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
//! Each of the valid `Value` types.
//!
//! These generally mimic the Sway types with a couple of exceptions:
//! - [`Type::Unit`] is still a discrete type rather than an empty tuple.  This may change in the
//!   future.
//! - [`Type::Union`] is a sum type which resembles a C union.  Each member of the union uses the
//!   same storage and the size of the union is the size of the largest member.
//!
//! [`Aggregate`] is an abstract collection of [`Type`]s used for structs, unions and arrays,
//! though see below for future improvements around splitting arrays into a different construct.

use crate::{context::Context, pretty::DebugWithContext, Constant, ConstantValue, Value};

#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct Type(pub slotmap::DefaultKey);

impl DebugWithContext for Type {
    fn fmt_with_context(
        &self,
        formatter: &mut std::fmt::Formatter,
        context: &Context,
    ) -> std::fmt::Result {
        self.get_content(context)
            .fmt_with_context(formatter, context)
    }
}

#[derive(Debug, Clone, DebugWithContext, Hash, PartialEq, Eq)]
pub enum TypeContent {
    Never,
    Unit,
    Bool,
    Uint(u16),
    B256,
    StringSlice,
    StringArray(u64),
    Array(Type, u64),
    Union(Vec<Type>),
    Struct(Vec<Type>),
    Slice,
    Pointer(Type),
    TypedSlice(Type),
}

impl Type {
    fn get_or_create_unique_type(context: &mut Context, t: TypeContent) -> Type {
        // Trying to avoiding cloning t unless we're creating a new type.
        #[allow(clippy::map_entry)]
        if !context.type_map.contains_key(&t) {
            let new_type = Type(context.types.insert(t.clone()));
            context.type_map.insert(t, new_type);
            new_type
        } else {
            context.type_map.get(&t).copied().unwrap()
        }
    }

    /// Get Type if it already exists.
    pub fn get_type(context: &Context, t: &TypeContent) -> Option<Type> {
        context.type_map.get(t).copied()
    }

    pub fn create_basic_types(context: &mut Context) {
        Self::get_or_create_unique_type(context, TypeContent::Never);
        Self::get_or_create_unique_type(context, TypeContent::Unit);
        Self::get_or_create_unique_type(context, TypeContent::Bool);
        Self::get_or_create_unique_type(context, TypeContent::Uint(8));
        Self::get_or_create_unique_type(context, TypeContent::Uint(16));
        Self::get_or_create_unique_type(context, TypeContent::Uint(32));
        Self::get_or_create_unique_type(context, TypeContent::Uint(64));
        Self::get_or_create_unique_type(context, TypeContent::Uint(256));
        Self::get_or_create_unique_type(context, TypeContent::B256);
        Self::get_or_create_unique_type(context, TypeContent::Slice);
    }

    /// Get the content for this [Type].
    pub fn get_content<'a>(&self, context: &'a Context) -> &'a TypeContent {
        &context.types[self.0]
    }

    /// Get never type
    pub fn get_never(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Never).expect("create_basic_types not called")
    }

    /// Get unit type
    pub fn get_unit(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Unit).expect("create_basic_types not called")
    }

    /// Get bool type
    pub fn get_bool(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Bool).expect("create_basic_types not called")
    }

    /// New unsigned integer type
    pub fn new_uint(context: &mut Context, width: u16) -> Type {
        Self::get_or_create_unique_type(context, TypeContent::Uint(width))
    }

    /// New u8 type
    pub fn get_uint8(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Uint(8)).expect("create_basic_types not called")
    }

    /// New u16 type
    pub fn get_uint16(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Uint(16)).expect("create_basic_types not called")
    }

    /// New u32 type
    pub fn get_uint32(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Uint(32)).expect("create_basic_types not called")
    }

    /// New u64 type
    pub fn get_uint64(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Uint(64)).expect("create_basic_types not called")
    }

    /// New u64 type
    pub fn get_uint256(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Uint(256)).expect("create_basic_types not called")
    }

    /// Get unsigned integer type
    pub fn get_uint(context: &Context, width: u16) -> Option<Type> {
        Self::get_type(context, &TypeContent::Uint(width))
    }

    /// Get B256 type
    pub fn get_b256(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::B256).expect("create_basic_types not called")
    }

    /// Get string type
    pub fn new_string_array(context: &mut Context, len: u64) -> Type {
        Self::get_or_create_unique_type(context, TypeContent::StringArray(len))
    }

    /// Get array type
    pub fn new_array(context: &mut Context, elm_ty: Type, len: u64) -> Type {
        Self::get_or_create_unique_type(context, TypeContent::Array(elm_ty, len))
    }

    /// Get union type
    pub fn new_union(context: &mut Context, fields: Vec<Type>) -> Type {
        Self::get_or_create_unique_type(context, TypeContent::Union(fields))
    }

    /// Get struct type
    pub fn new_struct(context: &mut Context, fields: Vec<Type>) -> Type {
        Self::get_or_create_unique_type(context, TypeContent::Struct(fields))
    }

    /// New pointer type
    pub fn new_ptr(context: &mut Context, to_ty: Type) -> Type {
        Self::get_or_create_unique_type(context, TypeContent::Pointer(to_ty))
    }

    /// Get slice type
    pub fn get_slice(context: &Context) -> Type {
        Self::get_type(context, &TypeContent::Slice).expect("create_basic_types not called")
    }

    /// Get typed slice type
    pub fn get_typed_slice(context: &mut Context, item_ty: Type) -> Type {
        Self::get_or_create_unique_type(context, TypeContent::TypedSlice(item_ty))
    }

    /// Return a string representation of type, used for printing.
    pub fn as_string(&self, context: &Context) -> String {
        let sep_types_str = |agg_content: &Vec<Type>, sep: &str| {
            agg_content
                .iter()
                .map(|ty| ty.as_string(context))
                .collect::<Vec<_>>()
                .join(sep)
        };

        match self.get_content(context) {
            TypeContent::Never => "never".into(),
            TypeContent::Unit => "()".into(),
            TypeContent::Bool => "bool".into(),
            TypeContent::Uint(nbits) => format!("u{nbits}"),
            TypeContent::B256 => "b256".into(),
            TypeContent::StringSlice => "str".into(),
            TypeContent::StringArray(n) => format!("string<{n}>"),
            TypeContent::Array(ty, cnt) => {
                format!("[{}; {}]", ty.as_string(context), cnt)
            }
            TypeContent::Union(agg) => {
                format!("( {} )", sep_types_str(agg, " | "))
            }
            TypeContent::Struct(agg) => {
                format!("{{ {} }}", sep_types_str(agg, ", "))
            }
            TypeContent::Slice => "slice".into(),
            TypeContent::TypedSlice(ty) => format!("__slice[{}]", ty.as_string(context)),
            TypeContent::Pointer(ty) => format!("ptr {}", ty.as_string(context)),
        }
    }

    /// Compare a type to this one for equivalence.
    /// `PartialEq` does not take into account the special case for Unions below.
    pub fn eq(&self, context: &Context, other: &Type) -> bool {
        match (self.get_content(context), other.get_content(context)) {
            (TypeContent::Unit, TypeContent::Unit) => true,
            (TypeContent::Bool, TypeContent::Bool) => true,
            (TypeContent::Uint(l), TypeContent::Uint(r)) => l == r,
            (TypeContent::B256, TypeContent::B256) => true,

            (TypeContent::StringSlice, TypeContent::StringSlice) => true,
            (TypeContent::StringArray(l), TypeContent::StringArray(r)) => l == r,

            (TypeContent::Array(l, llen), TypeContent::Array(r, rlen)) => {
                llen == rlen && l.eq(context, r)
            }

            (TypeContent::TypedSlice(l), TypeContent::TypedSlice(r)) => l.eq(context, r),

            (TypeContent::Struct(l), TypeContent::Struct(r))
            | (TypeContent::Union(l), TypeContent::Union(r)) => {
                l.len() == r.len() && l.iter().zip(r.iter()).all(|(l, r)| l.eq(context, r))
            }
            // Unions are special.  We say unions are equivalent to any of their variant types.
            (_, TypeContent::Union(_)) => other.eq(context, self),
            (TypeContent::Union(l), _) => l.iter().any(|field_ty| other.eq(context, field_ty)),
            // Never type can coerce into any other type.
            (TypeContent::Never, _) => true,
            (TypeContent::Slice, TypeContent::Slice) => true,
            (TypeContent::Pointer(l), TypeContent::Pointer(r)) => l.eq(context, r),
            _ => false,
        }
    }

    /// Is Never type
    pub fn is_never(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Never)
    }

    /// Is bool type
    pub fn is_bool(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Bool)
    }

    /// Is unit type
    pub fn is_unit(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Unit)
    }

    /// Is unsigned integer type
    pub fn is_uint(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Uint(_))
    }

    /// Is u8 type
    pub fn is_uint8(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Uint(8))
    }

    /// Is u32 type
    pub fn is_uint32(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Uint(32))
    }

    /// Is u64 type
    pub fn is_uint64(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Uint(64))
    }

    /// Is unsigned integer type of specific width
    pub fn is_uint_of(&self, context: &Context, width: u16) -> bool {
        matches!(*self.get_content(context), TypeContent::Uint(width_) if width == width_)
    }

    /// Is B256 type
    pub fn is_b256(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::B256)
    }

    /// Is string type
    pub fn is_string_slice(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::StringSlice)
    }

    /// Is string type
    pub fn is_string_array(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::StringArray(_))
    }

    /// Is array type
    pub fn is_array(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Array(..))
    }

    /// Is union type
    pub fn is_union(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Union(_))
    }

    /// Is struct type
    pub fn is_struct(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Struct(_))
    }

    /// Is enum type
    pub fn is_enum(&self, context: &Context) -> bool {
        // We have to do some painful special handling here for enums, which are tagged unions.
        // This really should be handled by the IR more explicitly and is something that will
        // hopefully be addressed by https://github.com/FuelLabs/sway/issues/2819#issuecomment-1256930392

        // Enums are at the moment represented as structs with two fields, first one being
        // the tag and second the union of variants. Enums are the only place we currently use unions
        // which makes the below heuristics valid.
        if !self.is_struct(context) {
            return false;
        }

        let field_tys = self.get_field_types(context);

        field_tys.len() == 2 && field_tys[0].is_uint(context) && field_tys[1].is_union(context)
    }

    /// Is aggregate type: struct, union, enum or array.
    pub fn is_aggregate(&self, context: &Context) -> bool {
        // Notice that enums are structs of tags and unions.
        self.is_struct(context) || self.is_union(context) || self.is_array(context)
    }

    /// Returns true if `self` is a slice type.
    pub fn is_slice(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Slice)
    }

    // TODO-IG: Check all the usages of `is_ptr`.
    /// Returns true if `self` is a pointer type.
    pub fn is_ptr(&self, context: &Context) -> bool {
        matches!(*self.get_content(context), TypeContent::Pointer(_))
    }

    /// Get pointed to type iff `self`` is a pointer.
    pub fn get_pointee_type(&self, context: &Context) -> Option<Type> {
        if let TypeContent::Pointer(to_ty) = self.get_content(context) {
            Some(*to_ty)
        } else {
            None
        }
    }

    /// Get width of an integer type.
    pub fn get_uint_width(&self, context: &Context) -> Option<u16> {
        if let TypeContent::Uint(width) = self.get_content(context) {
            Some(*width)
        } else {
            None
        }
    }

    /// What's the type of the struct/array value indexed by indices.
    pub fn get_indexed_type(&self, context: &Context, indices: &[u64]) -> Option<Type> {
        if indices.is_empty() {
            return None;
        }

        indices.iter().try_fold(*self, |ty, idx| {
            ty.get_field_type(context, *idx)
                .or_else(|| match ty.get_content(context) {
                    TypeContent::Array(ty, len) if idx < len => Some(*ty),
                    _ => None,
                })
        })
    }

    /// What's the offset, in bytes, of the indexed element?
    /// Returns `None` on invalid indices.
    /// Panics if `self` is not an aggregate (struct, union, or array).
    pub fn get_indexed_offset(&self, context: &Context, indices: &[u64]) -> Option<u64> {
        indices
            .iter()
            .try_fold((*self, 0), |(ty, accum_offset), idx| {
                if ty.is_struct(context) {
                    // Sum up all sizes of all previous fields.
                    // Every struct field is aligned to word boundary.
                    let prev_idxs_offset = (0..(*idx)).try_fold(0, |accum, pre_idx| {
                        ty.get_field_type(context, pre_idx)
                            .map(|field_ty| accum + field_ty.size(context).in_bytes_aligned())
                    })?;
                    ty.get_field_type(context, *idx)
                        .map(|field_ty| (field_ty, accum_offset + prev_idxs_offset))
                } else if ty.is_union(context) {
                    // Union variants have their raw size in bytes and are
                    // left padded within the union.
                    let union_size_in_bytes = ty.size(context).in_bytes();
                    ty.get_field_type(context, *idx).map(|field_ty| {
                        (
                            field_ty,
                            accum_offset
                                + (union_size_in_bytes - field_ty.size(context).in_bytes()),
                        )
                    })
                } else {
                    assert!(
                        ty.is_array(context),
                        "Expected aggregate type. Got {}.",
                        ty.as_string(context)
                    );
                    // size_of_element * idx will be the offset of idx.
                    ty.get_array_elem_type(context).map(|elm_ty| {
                        let prev_idxs_offset = ty
                            .get_array_elem_type(context)
                            .unwrap()
                            .size(context)
                            .in_bytes()
                            * idx;
                        (elm_ty, accum_offset + prev_idxs_offset)
                    })
                }
            })
            .map(|pair| pair.1)
    }

    /// What's the offset, in bytes, of the value indexed element?
    /// It may not always be possible to determine statically.
    pub fn get_value_indexed_offset(&self, context: &Context, indices: &[Value]) -> Option<u64> {
        let const_indices: Vec<_> = indices
            .iter()
            .map_while(|idx| {
                if let Some(Constant {
                    value: ConstantValue::Uint(idx),
                    ty: _,
                }) = idx.get_constant(context)
                {
                    Some(*idx)
                } else {
                    None
                }
            })
            .collect();
        (const_indices.len() == indices.len())
            .then(|| self.get_indexed_offset(context, &const_indices))
            .flatten()
    }

    pub fn get_field_type(&self, context: &Context, idx: u64) -> Option<Type> {
        if let TypeContent::Struct(fields) | TypeContent::Union(fields) = self.get_content(context)
        {
            fields.get(idx as usize).cloned()
        } else {
            // Trying to index a non-aggregate.
            None
        }
    }

    /// Get the type of the array element, if applicable.
    pub fn get_array_elem_type(&self, context: &Context) -> Option<Type> {
        if let TypeContent::Array(ty, _) = *self.get_content(context) {
            Some(ty)
        } else {
            None
        }
    }

    /// Get the type of the array element, if applicable.
    pub fn get_typed_slice_elem_type(&self, context: &Context) -> Option<Type> {
        if let TypeContent::TypedSlice(ty) = *self.get_content(context) {
            Some(ty)
        } else {
            None
        }
    }

    /// Get the length of the array , if applicable.
    pub fn get_array_len(&self, context: &Context) -> Option<u64> {
        if let TypeContent::Array(_, n) = *self.get_content(context) {
            Some(n)
        } else {
            None
        }
    }

    /// Get the length of a string.
    pub fn get_string_len(&self, context: &Context) -> Option<u64> {
        if let TypeContent::StringArray(n) = *self.get_content(context) {
            Some(n)
        } else {
            None
        }
    }

    /// Get the type of each field of a struct Type. Empty vector otherwise.
    pub fn get_field_types(&self, context: &Context) -> Vec<Type> {
        match self.get_content(context) {
            TypeContent::Struct(fields) | TypeContent::Union(fields) => fields.clone(),
            _ => vec![],
        }
    }

    /// Get the offset, in bytes, and the [Type] of the struct field at the index `field_idx`, if `self` is a struct,
    /// otherwise `None`.
    /// Panics if the `field_idx` is out of bounds.
    pub fn get_struct_field_offset_and_type(
        &self,
        context: &Context,
        field_idx: u64,
    ) -> Option<(u64, Type)> {
        if !self.is_struct(context) {
            return None;
        }

        let field_idx = field_idx as usize;
        let field_types = self.get_field_types(context);
        let field_offs_in_bytes = field_types
            .iter()
            .take(field_idx)
            .map(|field_ty| {
                // Struct fields are aligned to word boundary.
                field_ty.size(context).in_bytes_aligned()
            })
            .sum::<u64>();

        Some((field_offs_in_bytes, field_types[field_idx]))
    }

    /// Get the offset, in bytes, and the [Type] of the union field at the index `field_idx`, if `self` is a union,
    /// otherwise `None`.
    /// Panics if the `field_idx` is out of bounds.
    pub fn get_union_field_offset_and_type(
        &self,
        context: &Context,
        field_idx: u64,
    ) -> Option<(u64, Type)> {
        if !self.is_union(context) {
            return None;
        }

        let field_idx = field_idx as usize;
        let field_type = self.get_field_types(context)[field_idx];
        let union_size_in_bytes = self.size(context).in_bytes();
        // Union variants have their raw size in bytes and are
        // left padded within the union.
        let field_size_in_bytes = field_type.size(context).in_bytes();

        // The union fields are at offset (union_size - field_size) due to left padding.
        Some((union_size_in_bytes - field_size_in_bytes, field_type))
    }

    /// Returns the memory size of the [Type].
    /// The returned `TypeSize::in_bytes` will provide the raw memory size of the `self`,
    /// when it's not embedded in an aggregate.
    pub fn size(&self, context: &Context) -> TypeSize {
        match self.get_content(context) {
            TypeContent::Uint(8) | TypeContent::Bool | TypeContent::Unit | TypeContent::Never => {
                TypeSize::new(1)
            }
            // All integers larger than a byte are words since FuelVM only has memory operations on those two units.
            TypeContent::Uint(16)
            | TypeContent::Uint(32)
            | TypeContent::Uint(64)
            | TypeContent::Pointer(_) => TypeSize::new(8),
            TypeContent::Uint(256) => TypeSize::new(32),
            TypeContent::Uint(_) => unreachable!(),
            TypeContent::Slice => TypeSize::new(16),
            TypeContent::TypedSlice(..) => TypeSize::new(16),
            TypeContent::B256 => TypeSize::new(32),
            TypeContent::StringSlice => TypeSize::new(16),
            TypeContent::StringArray(n) => {
                TypeSize::new(super::size_bytes_round_up_to_word_alignment!(*n))
            }
            TypeContent::Array(el_ty, cnt) => TypeSize::new(cnt * el_ty.size(context).in_bytes()),
            TypeContent::Struct(field_tys) => {
                // Sum up all the field sizes, aligned to words.
                TypeSize::new(
                    field_tys
                        .iter()
                        .map(|field_ty| field_ty.size(context).in_bytes_aligned())
                        .sum(),
                )
            }
            TypeContent::Union(field_tys) => {
                // Find the max size for field sizes.
                TypeSize::new(
                    field_tys
                        .iter()
                        .map(|field_ty| field_ty.size(context).in_bytes_aligned())
                        .max()
                        .unwrap_or(0),
                )
            }
        }
    }
}

// This is a mouthful...
#[macro_export]
macro_rules! size_bytes_round_up_to_word_alignment {
    ($bytes_expr: expr) => {
        ($bytes_expr + 7) - (($bytes_expr + 7) % 8)
    };
}

/// A helper to check if an Option<Type> value is of a particular Type.
pub trait TypeOption {
    fn is(&self, pred: fn(&Type, &Context) -> bool, context: &Context) -> bool;
}

impl TypeOption for Option<Type> {
    fn is(&self, pred: fn(&Type, &Context) -> bool, context: &Context) -> bool {
        self.filter(|ty| pred(ty, context)).is_some()
    }
}

/// Provides information about a size of a type, raw and aligned to word boundaries.
#[derive(Clone, Debug)]
pub struct TypeSize {
    size_in_bytes: u64,
}

impl TypeSize {
    pub(crate) fn new(size_in_bytes: u64) -> Self {
        Self { size_in_bytes }
    }

    /// Returns the actual (unaligned) size of the type in bytes.
    pub fn in_bytes(&self) -> u64 {
        self.size_in_bytes
    }

    /// Returns the size of the type in bytes, aligned to word boundary.
    pub fn in_bytes_aligned(&self) -> u64 {
        (self.size_in_bytes + 7) - ((self.size_in_bytes + 7) % 8)
    }

    /// Returns the size of the type in words (aligned to word boundary).
    pub fn in_words(&self) -> u64 {
        (self.size_in_bytes + 7) / 8
    }
}

/// Provides information about padding expected when laying values in memory.
/// Padding depends on the type of the value, but also on the embedding of
/// the value in aggregates. E.g., in an array of `u8`, each `u8` is "padded"
/// to its size of one byte while as a struct field, it will be right padded
/// to 8 bytes.
#[derive(Clone, Debug, serde::Serialize)]
pub enum Padding {
    Left { target_size: usize },
    Right { target_size: usize },
}

impl Padding {
    /// Returns the default [Padding] for `u8`.
    pub fn default_for_u8(_value: u8) -> Self {
        // Dummy _value is used only to ensure correct usage at the call site.
        Self::Right { target_size: 1 }
    }

    /// Returns the default [Padding] for `u64`.
    pub fn default_for_u64(_value: u64) -> Self {
        // Dummy _value is used only to ensure correct usage at the call site.
        Self::Right { target_size: 8 }
    }

    /// Returns the default [Padding] for a byte array.
    pub fn default_for_byte_array(value: &[u8]) -> Self {
        Self::Right {
            target_size: value.len(),
        }
    }

    /// Returns the default [Padding] for an aggregate.
    /// `aggregate_size` is the overall size of the aggregate in bytes.
    pub fn default_for_aggregate(aggregate_size: usize) -> Self {
        Self::Right {
            target_size: aggregate_size,
        }
    }

    /// The target size in bytes.
    pub fn target_size(&self) -> usize {
        use Padding::*;
        match self {
            Left { target_size } | Right { target_size } => *target_size,
        }
    }
}

#[cfg(test)]
mod tests {
    pub use super::*;
    /// Unit tests in this module document and assert decisions on memory layout.
    mod memory_layout {
        use super::*;
        use crate::Context;
        use once_cell::sync::Lazy;
        use sway_features::ExperimentalFeatures;
        use sway_types::SourceEngine;

        #[test]
        /// Bool, when not embedded in aggregates, has a size of 1 byte.
        fn boolean() {
            let context = create_context();

            let s_bool = Type::get_bool(&context).size(&context);

            assert_eq!(s_bool.in_bytes(), 1);
        }

        #[test]
        /// Unit, when not embedded in aggregates, has a size of 1 byte.
        fn unit() {
            let context = create_context();

            let s_unit = Type::get_unit(&context).size(&context);

            assert_eq!(s_unit.in_bytes(), 1);
        }

        #[test]
        /// `u8`, when not embedded in aggregates, has a size of 1 byte.
        fn unsigned_u8() {
            let context = create_context();

            let s_u8 = Type::get_uint8(&context).size(&context);

            assert_eq!(s_u8.in_bytes(), 1);
        }

        #[test]
        /// `u16`, `u32`, and `u64,`, when not embedded in aggregates, have a size of 8 bytes/1 word.
        fn unsigned_u16_u32_u64() {
            let context = create_context();

            let s_u16 = Type::get_uint16(&context).size(&context);
            let s_u32 = Type::get_uint32(&context).size(&context);
            let s_u64 = Type::get_uint64(&context).size(&context);

            assert_eq!(s_u16.in_bytes(), 8);
            assert_eq!(s_u16.in_bytes(), s_u16.in_bytes_aligned());

            assert_eq!(s_u32.in_bytes(), 8);
            assert_eq!(s_u32.in_bytes(), s_u32.in_bytes_aligned());

            assert_eq!(s_u64.in_bytes(), 8);
            assert_eq!(s_u64.in_bytes(), s_u64.in_bytes_aligned());
        }

        #[test]
        /// `u256`, when not embedded in aggregates, has a size of 32 bytes.
        fn unsigned_u256() {
            let context = create_context();

            let s_u256 = Type::get_uint256(&context).size(&context);

            assert_eq!(s_u256.in_bytes(), 32);
            assert_eq!(s_u256.in_bytes(), s_u256.in_bytes_aligned());
        }

        #[test]
        /// Pointer to any type, when not embedded in aggregates, has a size of 8 bytes/1 word.
        fn pointer() {
            let mut context = create_context();

            for ty in all_sample_types(&mut context) {
                let s_ptr = Type::new_ptr(&mut context, ty).size(&context);

                assert_eq!(s_ptr.in_bytes(), 8);
                assert_eq!(s_ptr.in_bytes(), s_ptr.in_bytes_aligned());
            }
        }

        #[test]
        /// Slice, when not embedded in aggregates, has a size of 16 bytes/2 words.
        /// The first word is the pointer to the actual content, and the second the
        /// length of the slice.
        fn slice() {
            let context = create_context();

            let s_slice = Type::get_slice(&context).size(&context);

            assert_eq!(s_slice.in_bytes(), 16);
            assert_eq!(s_slice.in_bytes(), s_slice.in_bytes_aligned());
        }

        #[test]
        /// `B256`, when not embedded in aggregates, has a size of 32 bytes.
        fn b256() {
            let context = create_context();

            let s_b256 = Type::get_b256(&context).size(&context);

            assert_eq!(s_b256.in_bytes(), 32);
            assert_eq!(s_b256.in_bytes(), s_b256.in_bytes_aligned());
        }

        #[test]
        /// String slice, when not embedded in aggregates, has a size of 16 bytes/2 words.
        /// The first word is the pointer to the actual content, and the second the
        /// length of the slice.
        fn string_slice() {
            let mut context = create_context();

            let s_slice = Type::get_or_create_unique_type(&mut context, TypeContent::StringSlice)
                .size(&context);

            assert_eq!(s_slice.in_bytes(), 16);
            assert_eq!(s_slice.in_bytes(), s_slice.in_bytes_aligned());
        }

        #[test]
        /// String array, when not embedded in aggregates, has a size in bytes of its length, aligned to the word boundary.
        /// Note that this differs from other arrays, which are packed but not, in addition, aligned to the word boundary.
        /// The reason we have the alignment/padding in case of string arrays, is because of the current ABI encoding.
        /// The output receipt returned by a contract call can be a string array, and the way the output is encoded
        /// (at least for small strings) is by literally putting the ASCII bytes in the return value register.
        /// For string arrays smaller than 8 bytes this poses a problem, because we have to fill the register with something
        /// or start reading memory that isn't ours. And the workaround was to simply pad all string arrays with zeroes so
        /// they're all at least 8 bytes long.
        /// Thus, changing this behavior would be a breaking change in ABI compatibility.
        /// Note that we do want to change this behavior in the future, as a part of either refactoring the ABI encoding
        /// or proper support for slices.
        fn string_array() {
            let mut context = create_context();

            for (str_array_ty, len) in sample_string_arrays(&mut context) {
                assert!(str_array_ty.is_string_array(&context)); // Just in case.

                let s_str_array = str_array_ty.size(&context);

                assert_eq!(str_array_ty.get_string_len(&context).unwrap(), len);

                assert_eq!(
                    s_str_array.in_bytes(),
                    size_bytes_round_up_to_word_alignment!(len)
                );
                assert_eq!(s_str_array.in_bytes(), s_str_array.in_bytes_aligned());
            }
        }

        #[test]
        /// Array, when not embedded in aggregates, has a size in bytes of its length multiplied by the size of its element's type.
        /// Arrays are packed. The offset of the n-th element is `n * __size_of<ElementType>()`.
        fn array() {
            let mut context = create_context();

            for (array_ty, len, elem_size) in sample_arrays(&mut context) {
                assert!(array_ty.is_array(&context)); // Just in case.

                let s_array = array_ty.size(&context);

                assert_eq!(array_ty.get_array_len(&context).unwrap(), len);

                // The size of the array is the length multiplied by the element size.
                assert_eq!(s_array.in_bytes(), len * elem_size);

                for elem_index in 0..len {
                    let elem_offset = array_ty
                        .get_indexed_offset(&context, &[elem_index])
                        .unwrap();

                    // The offset of the element is its index multiplied by the element size.
                    assert_eq!(elem_offset, elem_index * elem_size);
                }
            }
        }

        #[test]
        /// Struct has a size in bytes of the sum of all of its fields.
        /// The size of each individual field is a multiple of the word size. Thus,
        /// if needed, fields are right-padded to the multiple of the word size.
        /// Each individual field is aligned to the word boundary.
        /// Struct fields are ordered in the order of their appearance in the struct definition.
        /// The offset of each field is the sum of the sizes of the preceding fields.
        /// Since the size of the each individual field is a multiple of the word size,
        /// the size of the struct is also always a multiple of the word size.
        fn r#struct() {
            let mut context = create_context();

            for (struct_ty, fields) in sample_structs(&mut context) {
                assert!(struct_ty.is_struct(&context)); // Just in case.

                let s_struct = struct_ty.size(&context);

                // The size of the struct is the sum of the field sizes,
                // where each field is, if needed, right-padded to the multiple of the
                // word size.
                assert_eq!(
                    s_struct.in_bytes(),
                    fields
                        .iter()
                        .map(|(_, raw_size)| size_bytes_round_up_to_word_alignment!(raw_size))
                        .sum::<u64>()
                );
                // Structs' sizes are always multiples of the word size.
                assert_eq!(s_struct.in_bytes(), s_struct.in_bytes_aligned());

                for field_index in 0..fields.len() {
                    // The offset of a field is the sum of the sizes of the previous fields.
                    let expected_offset = fields
                        .iter()
                        .take(field_index)
                        .map(|(_, raw_size)| size_bytes_round_up_to_word_alignment!(raw_size))
                        .sum::<u64>();

                    let field_offset = struct_ty
                        .get_indexed_offset(&context, &[field_index as u64])
                        .unwrap();
                    assert_eq!(field_offset, expected_offset);

                    let (field_offset, field_type) = struct_ty
                        .get_struct_field_offset_and_type(&context, field_index as u64)
                        .unwrap();
                    assert_eq!(field_offset, expected_offset);
                    assert_eq!(field_type, fields[field_index].0);
                }
            }
        }

        #[test]
        /// Union has a size in bytes of the largest of all of its variants,
        /// where the largest variant is, if needed, left-padded to the multiple of the word size.
        /// Variants overlap in memory and are left-padded (aligned to the right) to the size of the
        /// largest variant (already _right_ aligned/left-padded to the word boundary).
        /// Thus, a variant, in a general case, needs not to be aligned to the word boundary.
        /// The offset of a variant, relative to the union address is:
        ///
        ///  `__size_of<UnionType>() - __size_of<VariantType>()`.
        ///
        /// Since the size of the largest variant is a multiple of the word size,
        /// the size of the union is also always a multiple of the word size.
        fn union() {
            let mut context = create_context();

            for (union_ty, variants) in sample_unions(&mut context) {
                assert!(union_ty.is_union(&context)); // Just in case.

                let s_union = union_ty.size(&context);

                // The size of the union is the size of the largest variant,
                // where the largest variant is, if needed, left-padded to the multiple
                // of the word size.
                assert_eq!(
                    s_union.in_bytes(),
                    variants
                        .iter()
                        .map(|(_, raw_size)| size_bytes_round_up_to_word_alignment!(raw_size))
                        .max()
                        .unwrap_or_default()
                );
                // Unions' sizes are always multiples of the word size.
                assert_eq!(s_union.in_bytes(), s_union.in_bytes_aligned());

                for (variant_index, variant) in variants.iter().enumerate() {
                    // Variants are left-padded.
                    // The offset of a variant is the union size minus the raw variant size.
                    let expected_offset = s_union.in_bytes() - variant.1;

                    let variant_offset = union_ty
                        .get_indexed_offset(&context, &[variant_index as u64])
                        .unwrap();
                    assert_eq!(variant_offset, expected_offset);

                    let (variant_offset, field_type) = union_ty
                        .get_union_field_offset_and_type(&context, variant_index as u64)
                        .unwrap();
                    assert_eq!(variant_offset, expected_offset);
                    assert_eq!(field_type, variant.0);
                }
            }
        }

        // A bit of trickery just to avoid bloating test setups by having `SourceEngine`
        // instantiation in every test.
        // Not that we can't do the same with the `Context` because it must be isolated and
        // unique in every test.
        static SOURCE_ENGINE: Lazy<SourceEngine> = Lazy::new(SourceEngine::default);

        fn create_context() -> Context<'static> {
            Context::new(&SOURCE_ENGINE, ExperimentalFeatures::default())
        }

        /// Creates sample types that are not aggregates and do not point to
        /// other types. Where applicable, several typical representatives of
        /// a type are created, e.g., string arrays of different sizes.
        fn sample_non_aggregate_types(context: &mut Context) -> Vec<Type> {
            let mut types = vec![
                Type::get_bool(context),
                Type::get_unit(context),
                Type::get_uint(context, 8).unwrap(),
                Type::get_uint(context, 16).unwrap(),
                Type::get_uint(context, 32).unwrap(),
                Type::get_uint(context, 64).unwrap(),
                Type::get_uint(context, 256).unwrap(),
                Type::get_b256(context),
                Type::get_slice(context),
                Type::get_or_create_unique_type(context, TypeContent::StringSlice),
            ];

            types.extend(
                sample_string_arrays(context)
                    .into_iter()
                    .map(|(string_array, _)| string_array),
            );

            types
        }

        /// Creates sample string array types of different lengths and
        /// returns the string array types and their respective lengths.
        fn sample_string_arrays(context: &mut Context) -> Vec<(Type, u64)> {
            let mut types = vec![];

            for len in [0, 1, 7, 8, 15] {
                types.push((Type::new_string_array(context, len), len));
            }

            types
        }

        /// Creates sample array types of different lengths and
        /// different element types and returns the created array types
        /// and their respective lengths and the size of the element type.
        fn sample_arrays(context: &mut Context) -> Vec<(Type, u64, u64)> {
            let mut types = vec![];

            for len in [0, 1, 7, 8, 15] {
                for ty in sample_non_aggregate_types(context) {
                    // As commented in other places, we trust the result of the
                    // `size` method for non-aggregate types.
                    types.push((
                        Type::new_array(context, ty, len),
                        len,
                        ty.size(context).in_bytes(),
                    ));
                }

                for (array_ty, array_len, elem_size) in sample_arrays_to_embed(context) {
                    // We cannot use the `size` methods on arrays here because we use this
                    // samples to actually test it. We calculate the expected size manually
                    // according to the definition of the layout for the arrays.
                    types.push((
                        Type::new_array(context, array_ty, len),
                        len,
                        array_len * elem_size,
                    ));
                }

                for (struct_ty, struct_size) in sample_structs_to_embed(context) {
                    types.push((Type::new_array(context, struct_ty, len), len, struct_size));
                }
            }

            types
        }

        /// Creates sample struct types and returns the created struct types
        /// and their respective field types and their raw size in bytes
        /// (when not embedded).
        fn sample_structs(context: &mut Context) -> Vec<(Type, Vec<(Type, u64)>)> {
            let mut types = vec![];

            // Empty struct.
            types.push((Type::new_struct(context, vec![]), vec![]));

            // Structs with only one 1-byte long field.
            add_structs_with_non_aggregate_types_of_length_in_bytes(&mut types, context, 1);
            // Structs with only one 1-word long field.
            add_structs_with_non_aggregate_types_of_length_in_bytes(&mut types, context, 8);

            // Complex struct with fields of all non aggregate types, arrays, and structs.
            let mut fields = vec![];
            for ty in sample_non_aggregate_types(context) {
                // We can trust the result of the `size` method here,
                // because it is tested in tests for individual non-aggregate types.
                fields.push((ty, ty.size(context).in_bytes()));
            }
            for (array_ty, len, elem_size) in sample_arrays(context) {
                // We can't trust the result of the `size` method here,
                // because tests for arrays test embedded structs and vice versa.
                // So we will manually calculate the expected raw size in bytes,
                // as per the definition of the memory layout for the arrays.
                fields.push((array_ty, len * elem_size));
            }
            for (struct_ty, struct_size) in sample_structs_to_embed(context) {
                fields.push((struct_ty, struct_size));
            }

            types.push((
                Type::new_struct(
                    context,
                    fields.iter().map(|(field_ty, _)| *field_ty).collect(),
                ),
                fields,
            ));

            return types;

            fn add_structs_with_non_aggregate_types_of_length_in_bytes(
                types: &mut Vec<(Type, Vec<(Type, u64)>)>,
                context: &mut Context,
                field_type_size_in_bytes: u64,
            ) {
                for ty in sample_non_aggregate_types(context) {
                    if ty.size(context).in_bytes() != field_type_size_in_bytes {
                        continue;
                    }

                    types.push((
                        Type::new_struct(context, vec![ty]),
                        vec![(ty, field_type_size_in_bytes)],
                    ));
                }
            }
        }

        /// Creates sample union types and returns the created union types
        /// and their respective variant types and their raw size in bytes
        /// (when not embedded).
        fn sample_unions(context: &mut Context) -> Vec<(Type, Vec<(Type, u64)>)> {
            let mut types = vec![];

            // Empty union.
            types.push((Type::new_union(context, vec![]), vec![]));

            // Unions with only one 1-byte long variant.
            add_unions_with_non_aggregate_types_of_length_in_bytes(&mut types, context, 1);
            // Unions with only one 1-word long variant.
            add_unions_with_non_aggregate_types_of_length_in_bytes(&mut types, context, 8);

            // Complex union with variants of all non aggregate types, arrays, and structs.
            // For the reasons for using the `size` method for non-aggregates vs
            // calculating sizes for non aggregates, see the comment in the
            // `sample_structs` function.
            let mut variants = vec![];
            for ty in sample_non_aggregate_types(context) {
                variants.push((ty, ty.size(context).in_bytes()));
            }
            for (array_ty, len, elem_size) in sample_arrays(context) {
                variants.push((array_ty, len * elem_size));
            }
            for (struct_ty, struct_size) in sample_structs_to_embed(context) {
                variants.push((struct_ty, struct_size));
            }

            types.push((
                Type::new_union(
                    context,
                    variants.iter().map(|(field_ty, _)| *field_ty).collect(),
                ),
                variants,
            ));

            return types;

            fn add_unions_with_non_aggregate_types_of_length_in_bytes(
                types: &mut Vec<(Type, Vec<(Type, u64)>)>,
                context: &mut Context,
                variant_type_size_in_bytes: u64,
            ) {
                for ty in sample_non_aggregate_types(context) {
                    if ty.size(context).in_bytes() != variant_type_size_in_bytes {
                        continue;
                    }

                    types.push((
                        Type::new_union(context, vec![ty]),
                        vec![(ty, variant_type_size_in_bytes)],
                    ));
                }
            }
        }

        /// Creates sample arrays to embed in other aggregates.
        /// Returns the created array types, its length, and the size
        /// of the element type.
        fn sample_arrays_to_embed(context: &mut Context) -> Vec<(Type, u64, u64)> {
            let mut types = vec![];

            for len in [0, 1, 7, 8, 15] {
                for elem_ty in sample_non_aggregate_types(context) {
                    types.push((
                        Type::new_array(context, elem_ty, len),
                        len,
                        elem_ty.size(context).in_bytes(),
                    ));
                }
            }

            types
        }

        /// Creates sample structs to embed in other aggregates.
        /// Returns the struct type and size in bytes for each created struct.
        fn sample_structs_to_embed(context: &mut Context) -> Vec<(Type, u64)> {
            let mut types = vec![];

            // Create structs with just one field for each non_aggregate type.
            for field_ty in sample_non_aggregate_types(context) {
                // We can trust the result of the `size` method here,
                // because it is tested in tests for individual non-aggregate types.
                // We align it to the word boundary to satisfy the layout of structs.
                types.push((
                    Type::new_struct(context, vec![field_ty]),
                    field_ty.size(context).in_bytes_aligned(),
                ));
            }

            // Create structs for pairwise combinations of field types.
            let field_types = sample_non_aggregate_types(context);
            for (index, first_field_ty) in field_types.iter().enumerate() {
                for second_field_type in field_types.iter().skip(index) {
                    // Again, we trust the `size` method called on non-aggregate types
                    // and calculate the struct size on our own.
                    let struct_size = first_field_ty.size(context).in_bytes_aligned()
                        + second_field_type.size(context).in_bytes_aligned();
                    types.push((
                        Type::new_struct(context, vec![*first_field_ty, *second_field_type]),
                        struct_size,
                    ));
                }
            }

            // Create a struct with a field for each aggregate type.
            let field_types = sample_non_aggregate_types(context);
            let struct_size = field_types
                .iter()
                .map(|ty| ty.size(context).in_bytes_aligned())
                .sum();
            types.push((Type::new_struct(context, field_types), struct_size));

            types
        }

        /// Returns all types that we can have, including several typical samples for
        /// aggregates like, e.g., arrays of different elements and different sizes.
        fn all_sample_types(context: &mut Context) -> Vec<Type> {
            let mut types = vec![];

            types.extend(sample_non_aggregate_types(context));
            types.extend(
                sample_arrays(context)
                    .into_iter()
                    .map(|(array_ty, _, _)| array_ty),
            );
            types.extend(
                sample_structs(context)
                    .into_iter()
                    .map(|(array_ty, __)| array_ty),
            );

            types
        }
    }
}