sway_ir/optimize/inline.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
//! Function inlining.
//!
//! Function inlining is pretty hairy so these passes must be maintained with care.
use std::{cell::RefCell, collections::HashMap};
use rustc_hash::FxHashMap;
use crate::{
asm::AsmArg,
block::Block,
call_graph,
context::Context,
error::IrError,
function::Function,
instruction::{FuelVmInstruction, InstOp},
irtype::Type,
local_var::LocalVar,
metadata::{combine, MetadataIndex},
value::{Value, ValueContent, ValueDatum},
AnalysisResults, BlockArgument, Instruction, Module, Pass, PassMutability, ScopedPass,
};
pub const FN_INLINE_NAME: &str = "inline";
pub fn create_fn_inline_pass() -> Pass {
Pass {
name: FN_INLINE_NAME,
descr: "Function inlining",
deps: vec![],
runner: ScopedPass::ModulePass(PassMutability::Transform(fn_inline)),
}
}
/// This is a copy of sway_core::inline::Inline.
/// TODO: Reuse: Depend on sway_core? Move it to sway_types?
#[derive(Debug)]
pub enum Inline {
Always,
Never,
}
pub fn metadata_to_inline(context: &Context, md_idx: Option<MetadataIndex>) -> Option<Inline> {
fn for_each_md_idx<T, F: FnMut(MetadataIndex) -> Option<T>>(
context: &Context,
md_idx: Option<MetadataIndex>,
mut f: F,
) -> Option<T> {
// If md_idx is not None and is a list then try them all.
md_idx.and_then(|md_idx| {
if let Some(md_idcs) = md_idx.get_content(context).unwrap_list() {
md_idcs.iter().find_map(|md_idx| f(*md_idx))
} else {
f(md_idx)
}
})
}
for_each_md_idx(context, md_idx, |md_idx| {
// Create a new inline and save it in the cache.
md_idx
.get_content(context)
.unwrap_struct("inline", 1)
.and_then(|fields| fields[0].unwrap_string())
.and_then(|inline_str| {
let inline = match inline_str {
"always" => Some(Inline::Always),
"never" => Some(Inline::Never),
_otherwise => None,
}?;
Some(inline)
})
})
}
pub fn fn_inline(
context: &mut Context,
_: &AnalysisResults,
module: Module,
) -> Result<bool, IrError> {
// Inspect ALL calls and count how often each function is called.
let call_counts: HashMap<Function, u64> =
module
.function_iter(context)
.fold(HashMap::new(), |mut counts, func| {
for (_block, ins) in func.instruction_iter(context) {
if let Some(Instruction {
op: InstOp::Call(callee, _args),
..
}) = ins.get_instruction(context)
{
counts
.entry(*callee)
.and_modify(|count| *count += 1)
.or_insert(1);
}
}
counts
});
let inline_heuristic = |ctx: &Context, func: &Function, _call_site: &Value| {
// The encoding code in the `__entry` functions contains pointer patterns that mark
// escape analysis and referred symbols as incomplete. This effectively forbids optimizations
// like SROA nad DCE. If we inline original entries, like e.g., `main`, the code in them will
// also not be optimized. Therefore, we forbid inlining of original entries into `__entry`.
if func.is_original_entry(ctx) {
return false;
}
let attributed_inline = metadata_to_inline(ctx, func.get_metadata(ctx));
match attributed_inline {
Some(Inline::Always) => {
// TODO: check if inlining of function is possible
// return true;
}
Some(Inline::Never) => {
return false;
}
None => {}
}
// If the function is called only once then definitely inline it.
if call_counts.get(func).copied().unwrap_or(0) == 1 {
return true;
}
// If the function is (still) small then also inline it.
const MAX_INLINE_INSTRS_COUNT: usize = 4;
if func.num_instructions_incl_asm_instructions(ctx) <= MAX_INLINE_INSTRS_COUNT {
return true;
}
false
};
let cg =
call_graph::build_call_graph(context, &module.function_iter(context).collect::<Vec<_>>());
let functions = call_graph::callee_first_order(&cg);
let mut modified = false;
for function in functions {
modified |= inline_some_function_calls(context, &function, inline_heuristic)?;
}
Ok(modified)
}
/// Inline all calls made from a specific function, effectively removing all `Call` instructions.
///
/// e.g., If this is applied to main() then all calls in the program are removed. This is
/// obviously dangerous for recursive functions, in which case this pass would inline forever.
pub fn inline_all_function_calls(
context: &mut Context,
function: &Function,
) -> Result<bool, IrError> {
inline_some_function_calls(context, function, |_, _, _| true)
}
/// Inline function calls based on a provided heuristic predicate.
///
/// There are many things to consider when deciding to inline a function. For example:
/// - The size of the function, especially if smaller than the call overhead size.
/// - The stack frame size of the function.
/// - The number of calls made to the function or if the function is called inside a loop.
/// - A particular call has constant arguments implying further constant folding.
/// - An attribute request, e.g., #[always_inline], #[never_inline].
pub fn inline_some_function_calls<F: Fn(&Context, &Function, &Value) -> bool>(
context: &mut Context,
function: &Function,
predicate: F,
) -> Result<bool, IrError> {
// Find call sites which passes the predicate.
// We use a RefCell so that the inliner can modify the value
// when it moves other instructions (which could be in call_date) after an inline.
let (call_sites, call_data): (Vec<_>, FxHashMap<_, _>) = function
.instruction_iter(context)
.filter_map(|(block, call_val)| match context.values[call_val.0].value {
ValueDatum::Instruction(Instruction {
op: InstOp::Call(inlined_function, _),
..
}) => predicate(context, &inlined_function, &call_val).then_some((
call_val,
(call_val, RefCell::new((block, inlined_function))),
)),
_ => None,
})
.unzip();
for call_site in &call_sites {
let call_site_in = call_data.get(call_site).unwrap();
let (block, inlined_function) = *call_site_in.borrow();
if function == &inlined_function {
// We can't inline a function into itself.
continue;
}
inline_function_call(
context,
*function,
block,
*call_site,
inlined_function,
&call_data,
)?;
}
Ok(!call_data.is_empty())
}
/// A utility to get a predicate which can be passed to inline_some_function_calls() based on
/// certain sizes of the function. If a constraint is None then any size is assumed to be
/// acceptable.
///
/// The max_stack_size is a bit tricky, as the IR doesn't really know (or care) about the size of
/// types. See the source code for how it works.
pub fn is_small_fn(
max_blocks: Option<usize>,
max_instrs: Option<usize>,
max_stack_size: Option<usize>,
) -> impl Fn(&Context, &Function, &Value) -> bool {
fn count_type_elements(context: &Context, ty: &Type) -> usize {
// This is meant to just be a heuristic rather than be super accurate.
if ty.is_array(context) {
count_type_elements(context, &ty.get_array_elem_type(context).unwrap())
* ty.get_array_len(context).unwrap() as usize
} else if ty.is_union(context) {
ty.get_field_types(context)
.iter()
.map(|ty| count_type_elements(context, ty))
.max()
.unwrap_or(1)
} else if ty.is_struct(context) {
ty.get_field_types(context)
.iter()
.map(|ty| count_type_elements(context, ty))
.sum()
} else {
1
}
}
move |context: &Context, function: &Function, _call_site: &Value| -> bool {
max_blocks.map_or(true, |max_block_count| {
function.num_blocks(context) <= max_block_count
}) && max_instrs.map_or(true, |max_instrs_count| {
function.num_instructions_incl_asm_instructions(context) <= max_instrs_count
}) && max_stack_size.map_or(true, |max_stack_size_count| {
function
.locals_iter(context)
.map(|(_name, ptr)| count_type_elements(context, &ptr.get_inner_type(context)))
.sum::<usize>()
<= max_stack_size_count
})
}
}
/// Inline a function to a specific call site within another function.
///
/// The destination function, block and call site must be specified along with the function to
/// inline.
pub fn inline_function_call(
context: &mut Context,
function: Function,
block: Block,
call_site: Value,
inlined_function: Function,
call_data: &FxHashMap<Value, RefCell<(Block, Function)>>,
) -> Result<(), IrError> {
// Split the block at right after the call site.
let call_site_idx = block
.instruction_iter(context)
.position(|v| v == call_site)
.unwrap();
let (pre_block, post_block) = block.split_at(context, call_site_idx + 1);
if post_block != block {
// We need to update call_data for every call_site that was in block.
for inst in post_block.instruction_iter(context).filter(|inst| {
matches!(
context.values[inst.0].value,
ValueDatum::Instruction(Instruction {
op: InstOp::Call(..),
..
})
)
}) {
if let Some(call_info) = call_data.get(&inst) {
call_info.borrow_mut().0 = post_block;
}
}
}
// Remove the call from the pre_block instructions. It's still in the context.values[] though.
pre_block.remove_last_instruction(context);
// Returned values, if any, go to `post_block`, so a block arg there.
// We don't expect `post_block` to already have any block args.
if post_block.new_arg(context, call_site.get_type(context).unwrap()) != 0 {
panic!("Expected newly created post_block to not have block args")
}
function.replace_value(
context,
call_site,
post_block.get_arg(context, 0).unwrap(),
None,
);
// Take the locals from the inlined function and add them to this function. `value_map` is a
// map from the original local ptrs to the new ptrs.
let ptr_map = function.merge_locals_from(context, inlined_function);
let mut value_map = HashMap::new();
// Add the mapping from argument values in the inlined function to the args passed to the call.
if let ValueDatum::Instruction(Instruction {
op: InstOp::Call(_, passed_vals),
..
}) = &context.values[call_site.0].value
{
for (arg_val, passed_val) in context.functions[inlined_function.0]
.arguments
.iter()
.zip(passed_vals.iter())
{
value_map.insert(arg_val.1, *passed_val);
}
}
// Get the metadata attached to the function call which may need to be propagated to the
// inlined instructions.
let metadata = context.values[call_site.0].metadata;
// Now remove the call altogether.
context.values.remove(call_site.0);
// Insert empty blocks from the inlined function between our split blocks, and create a mapping
// from old blocks to new. We need this when inlining branch instructions, so they branch to
// the new blocks.
//
// We map the entry block in the inlined function (which we know must exist) to our `pre_block`
// from the split above. We'll start appending inlined instructions to that block rather than
// a new one (with a redundant branch to it from the `pre_block`).
let inlined_fn_name = inlined_function.get_name(context).to_owned();
let mut block_map = HashMap::new();
let mut block_iter = context.functions[inlined_function.0]
.blocks
.clone()
.into_iter();
block_map.insert(block_iter.next().unwrap(), pre_block);
block_map = block_iter.fold(block_map, |mut block_map, inlined_block| {
let inlined_block_label = inlined_block.get_label(context);
let new_block = function
.create_block_before(
context,
&post_block,
Some(format!("{inlined_fn_name}_{inlined_block_label}")),
)
.unwrap();
block_map.insert(inlined_block, new_block);
// We collect so that context can be mutably borrowed later.
let inlined_args: Vec<_> = inlined_block.arg_iter(context).copied().collect();
for inlined_arg in inlined_args {
if let ValueDatum::Argument(BlockArgument {
block: _,
idx: _,
ty,
}) = &context.values[inlined_arg.0].value
{
let index = new_block.new_arg(context, *ty);
value_map.insert(inlined_arg, new_block.get_arg(context, index).unwrap());
} else {
unreachable!("Expected a block argument")
}
}
block_map
});
// We now have a mapping from old blocks to new (currently empty) blocks, and a mapping from
// old values (locals and args at this stage) to new values. We can copy instructions over,
// translating their blocks and values to refer to the new ones. The value map is still live
// as we add new instructions which replace the old ones to it too.
let inlined_blocks = context.functions[inlined_function.0].blocks.clone();
for block in &inlined_blocks {
for ins in block.instruction_iter(context) {
inline_instruction(
context,
block_map.get(block).unwrap(),
&post_block,
&ins,
&block_map,
&mut value_map,
&ptr_map,
metadata,
);
}
}
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn inline_instruction(
context: &mut Context,
new_block: &Block,
post_block: &Block,
instruction: &Value,
block_map: &HashMap<Block, Block>,
value_map: &mut HashMap<Value, Value>,
local_map: &HashMap<LocalVar, LocalVar>,
fn_metadata: Option<MetadataIndex>,
) {
// Util to translate old blocks to new. If an old block isn't in the map then we panic, since
// it should be guaranteed to be there...that's a bug otherwise.
let map_block = |old_block| *block_map.get(&old_block).unwrap();
// Util to translate old values to new. If an old value isn't in the map then it (should be)
// a const, which we can just keep using.
let map_value = |old_val: Value| value_map.get(&old_val).copied().unwrap_or(old_val);
let map_local = |old_local| local_map.get(&old_local).copied().unwrap();
// The instruction needs to be cloned into the new block, with each value and/or block
// translated using the above maps. Most of these are relatively cheap as Instructions
// generally are lightweight, except maybe ASM blocks, but we're able to re-use the block
// content since it's a black box and not concerned with Values, Blocks or Pointers.
//
// We need to clone the instruction here, which is unfortunate. Maybe in the future we
// restructure instructions somehow, so we don't need a persistent `&Context` to access them.
if let ValueContent {
value: ValueDatum::Instruction(old_ins),
metadata: val_metadata,
} = context.values[instruction.0].clone()
{
// Combine the function metadata with this instruction metadata so we don't lose the
// function metadata after inlining.
let metadata = combine(context, &fn_metadata, &val_metadata);
let new_ins = match old_ins.op {
InstOp::AsmBlock(asm, args) => {
let new_args = args
.iter()
.map(|AsmArg { name, initializer }| AsmArg {
name: name.clone(),
initializer: initializer.map(map_value),
})
.collect();
// We can re-use the old asm block with the updated args.
new_block.append(context).asm_block_from_asm(asm, new_args)
}
InstOp::BitCast(value, ty) => new_block.append(context).bitcast(map_value(value), ty),
InstOp::UnaryOp { op, arg } => new_block.append(context).unary_op(op, map_value(arg)),
InstOp::BinaryOp { op, arg1, arg2 } => {
new_block
.append(context)
.binary_op(op, map_value(arg1), map_value(arg2))
}
// For `br` and `cbr` below we don't need to worry about the phi values, they're
// adjusted later in `inline_function_call()`.
InstOp::Branch(b) => new_block.append(context).branch(
map_block(b.block),
b.args.iter().map(|v| map_value(*v)).collect(),
),
InstOp::Call(f, args) => new_block.append(context).call(
f,
args.iter()
.map(|old_val: &Value| map_value(*old_val))
.collect::<Vec<Value>>()
.as_slice(),
),
InstOp::CastPtr(val, ty) => new_block.append(context).cast_ptr(map_value(val), ty),
InstOp::Cmp(pred, lhs_value, rhs_value) => {
new_block
.append(context)
.cmp(pred, map_value(lhs_value), map_value(rhs_value))
}
InstOp::ConditionalBranch {
cond_value,
true_block,
false_block,
} => new_block.append(context).conditional_branch(
map_value(cond_value),
map_block(true_block.block),
map_block(false_block.block),
true_block.args.iter().map(|v| map_value(*v)).collect(),
false_block.args.iter().map(|v| map_value(*v)).collect(),
),
InstOp::ContractCall {
return_type,
name,
params,
coins,
asset_id,
gas,
} => new_block.append(context).contract_call(
return_type,
name,
map_value(params),
map_value(coins),
map_value(asset_id),
map_value(gas),
),
InstOp::FuelVm(fuel_vm_instr) => match fuel_vm_instr {
FuelVmInstruction::Gtf { index, tx_field_id } => {
new_block.append(context).gtf(map_value(index), tx_field_id)
}
FuelVmInstruction::Log {
log_val,
log_ty,
log_id,
} => new_block
.append(context)
.log(map_value(log_val), log_ty, map_value(log_id)),
FuelVmInstruction::ReadRegister(reg) => {
new_block.append(context).read_register(reg)
}
FuelVmInstruction::Revert(val) => new_block.append(context).revert(map_value(val)),
FuelVmInstruction::JmpMem => new_block.append(context).jmp_mem(),
FuelVmInstruction::Smo {
recipient,
message,
message_size,
coins,
} => new_block.append(context).smo(
map_value(recipient),
map_value(message),
map_value(message_size),
map_value(coins),
),
FuelVmInstruction::StateClear {
key,
number_of_slots,
} => new_block
.append(context)
.state_clear(map_value(key), map_value(number_of_slots)),
FuelVmInstruction::StateLoadQuadWord {
load_val,
key,
number_of_slots,
} => new_block.append(context).state_load_quad_word(
map_value(load_val),
map_value(key),
map_value(number_of_slots),
),
FuelVmInstruction::StateLoadWord(key) => {
new_block.append(context).state_load_word(map_value(key))
}
FuelVmInstruction::StateStoreQuadWord {
stored_val,
key,
number_of_slots,
} => new_block.append(context).state_store_quad_word(
map_value(stored_val),
map_value(key),
map_value(number_of_slots),
),
FuelVmInstruction::StateStoreWord { stored_val, key } => new_block
.append(context)
.state_store_word(map_value(stored_val), map_value(key)),
FuelVmInstruction::WideUnaryOp { op, arg, result } => new_block
.append(context)
.wide_unary_op(op, map_value(arg), map_value(result)),
FuelVmInstruction::WideBinaryOp {
op,
arg1,
arg2,
result,
} => new_block.append(context).wide_binary_op(
op,
map_value(arg1),
map_value(arg2),
map_value(result),
),
FuelVmInstruction::WideModularOp {
op,
result,
arg1,
arg2,
arg3,
} => new_block.append(context).wide_modular_op(
op,
map_value(result),
map_value(arg1),
map_value(arg2),
map_value(arg3),
),
FuelVmInstruction::WideCmpOp { op, arg1, arg2 } => new_block
.append(context)
.wide_cmp_op(op, map_value(arg1), map_value(arg2)),
FuelVmInstruction::Retd { ptr, len } => new_block
.append(context)
.retd(map_value(ptr), map_value(len)),
},
InstOp::GetElemPtr {
base,
elem_ptr_ty,
indices,
} => {
let elem_ty = elem_ptr_ty.get_pointee_type(context).unwrap();
new_block.append(context).get_elem_ptr(
map_value(base),
elem_ty,
indices.iter().map(|idx| map_value(*idx)).collect(),
)
}
InstOp::GetLocal(local_var) => {
new_block.append(context).get_local(map_local(local_var))
}
InstOp::GetConfig(module, name) => new_block.append(context).get_config(module, name),
InstOp::IntToPtr(value, ty) => {
new_block.append(context).int_to_ptr(map_value(value), ty)
}
InstOp::Load(src_val) => new_block.append(context).load(map_value(src_val)),
InstOp::MemCopyBytes {
dst_val_ptr,
src_val_ptr,
byte_len,
} => new_block.append(context).mem_copy_bytes(
map_value(dst_val_ptr),
map_value(src_val_ptr),
byte_len,
),
InstOp::MemCopyVal {
dst_val_ptr,
src_val_ptr,
} => new_block
.append(context)
.mem_copy_val(map_value(dst_val_ptr), map_value(src_val_ptr)),
InstOp::Nop => new_block.append(context).nop(),
InstOp::PtrToInt(value, ty) => {
new_block.append(context).ptr_to_int(map_value(value), ty)
}
// We convert `ret` to `br post_block` and add the returned value as a phi value.
InstOp::Ret(val, _) => new_block
.append(context)
.branch(*post_block, vec![map_value(val)]),
InstOp::Store {
dst_val_ptr,
stored_val,
} => new_block
.append(context)
.store(map_value(dst_val_ptr), map_value(stored_val)),
}
.add_metadatum(context, metadata);
value_map.insert(*instruction, new_ins);
}
}