sway_ir/optimize/
inline.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
//! Function inlining.
//!
//! Function inlining is pretty hairy so these passes must be maintained with care.

use std::{cell::RefCell, collections::HashMap};

use rustc_hash::FxHashMap;

use crate::{
    asm::AsmArg,
    block::Block,
    call_graph,
    context::Context,
    error::IrError,
    function::Function,
    instruction::{FuelVmInstruction, InstOp},
    irtype::Type,
    local_var::LocalVar,
    metadata::{combine, MetadataIndex},
    value::{Value, ValueContent, ValueDatum},
    AnalysisResults, BlockArgument, Instruction, Module, Pass, PassMutability, ScopedPass,
};

pub const FN_INLINE_NAME: &str = "inline";

pub fn create_fn_inline_pass() -> Pass {
    Pass {
        name: FN_INLINE_NAME,
        descr: "Function inlining",
        deps: vec![],
        runner: ScopedPass::ModulePass(PassMutability::Transform(fn_inline)),
    }
}

/// This is a copy of sway_core::inline::Inline.
/// TODO: Reuse: Depend on sway_core? Move it to sway_types?
#[derive(Debug)]
pub enum Inline {
    Always,
    Never,
}

pub fn metadata_to_inline(context: &Context, md_idx: Option<MetadataIndex>) -> Option<Inline> {
    fn for_each_md_idx<T, F: FnMut(MetadataIndex) -> Option<T>>(
        context: &Context,
        md_idx: Option<MetadataIndex>,
        mut f: F,
    ) -> Option<T> {
        // If md_idx is not None and is a list then try them all.
        md_idx.and_then(|md_idx| {
            if let Some(md_idcs) = md_idx.get_content(context).unwrap_list() {
                md_idcs.iter().find_map(|md_idx| f(*md_idx))
            } else {
                f(md_idx)
            }
        })
    }
    for_each_md_idx(context, md_idx, |md_idx| {
        // Create a new inline and save it in the cache.
        md_idx
            .get_content(context)
            .unwrap_struct("inline", 1)
            .and_then(|fields| fields[0].unwrap_string())
            .and_then(|inline_str| {
                let inline = match inline_str {
                    "always" => Some(Inline::Always),
                    "never" => Some(Inline::Never),
                    _otherwise => None,
                }?;
                Some(inline)
            })
    })
}

pub fn fn_inline(
    context: &mut Context,
    _: &AnalysisResults,
    module: Module,
) -> Result<bool, IrError> {
    // Inspect ALL calls and count how often each function is called.
    let call_counts: HashMap<Function, u64> =
        module
            .function_iter(context)
            .fold(HashMap::new(), |mut counts, func| {
                for (_block, ins) in func.instruction_iter(context) {
                    if let Some(Instruction {
                        op: InstOp::Call(callee, _args),
                        ..
                    }) = ins.get_instruction(context)
                    {
                        counts
                            .entry(*callee)
                            .and_modify(|count| *count += 1)
                            .or_insert(1);
                    }
                }
                counts
            });

    let inline_heuristic = |ctx: &Context, func: &Function, _call_site: &Value| {
        // The encoding code in the `__entry` functions contains pointer patterns that mark
        // escape analysis and referred symbols as incomplete. This effectively forbids optimizations
        // like SROA nad DCE. If we inline original entries, like e.g., `main`, the code in them will
        // also not be optimized. Therefore, we forbid inlining of original entries into `__entry`.
        if func.is_original_entry(ctx) {
            return false;
        }

        let attributed_inline = metadata_to_inline(ctx, func.get_metadata(ctx));
        match attributed_inline {
            Some(Inline::Always) => {
                // TODO: check if inlining of function is possible
                // return true;
            }
            Some(Inline::Never) => {
                return false;
            }
            None => {}
        }

        // If the function is called only once then definitely inline it.
        if call_counts.get(func).copied().unwrap_or(0) == 1 {
            return true;
        }

        // If the function is (still) small then also inline it.
        const MAX_INLINE_INSTRS_COUNT: usize = 4;
        if func.num_instructions_incl_asm_instructions(ctx) <= MAX_INLINE_INSTRS_COUNT {
            return true;
        }

        false
    };

    let cg =
        call_graph::build_call_graph(context, &module.function_iter(context).collect::<Vec<_>>());
    let functions = call_graph::callee_first_order(&cg);
    let mut modified = false;

    for function in functions {
        modified |= inline_some_function_calls(context, &function, inline_heuristic)?;
    }
    Ok(modified)
}

/// Inline all calls made from a specific function, effectively removing all `Call` instructions.
///
/// e.g., If this is applied to main() then all calls in the program are removed.  This is
/// obviously dangerous for recursive functions, in which case this pass would inline forever.

pub fn inline_all_function_calls(
    context: &mut Context,
    function: &Function,
) -> Result<bool, IrError> {
    inline_some_function_calls(context, function, |_, _, _| true)
}

/// Inline function calls based on a provided heuristic predicate.
///
/// There are many things to consider when deciding to inline a function.  For example:
/// - The size of the function, especially if smaller than the call overhead size.
/// - The stack frame size of the function.
/// - The number of calls made to the function or if the function is called inside a loop.
/// - A particular call has constant arguments implying further constant folding.
/// - An attribute request, e.g., #[always_inline], #[never_inline].

pub fn inline_some_function_calls<F: Fn(&Context, &Function, &Value) -> bool>(
    context: &mut Context,
    function: &Function,
    predicate: F,
) -> Result<bool, IrError> {
    // Find call sites which passes the predicate.
    // We use a RefCell so that the inliner can modify the value
    // when it moves other instructions (which could be in call_date) after an inline.
    let (call_sites, call_data): (Vec<_>, FxHashMap<_, _>) = function
        .instruction_iter(context)
        .filter_map(|(block, call_val)| match context.values[call_val.0].value {
            ValueDatum::Instruction(Instruction {
                op: InstOp::Call(inlined_function, _),
                ..
            }) => predicate(context, &inlined_function, &call_val).then_some((
                call_val,
                (call_val, RefCell::new((block, inlined_function))),
            )),
            _ => None,
        })
        .unzip();

    for call_site in &call_sites {
        let call_site_in = call_data.get(call_site).unwrap();
        let (block, inlined_function) = *call_site_in.borrow();

        if function == &inlined_function {
            // We can't inline a function into itself.
            continue;
        }

        inline_function_call(
            context,
            *function,
            block,
            *call_site,
            inlined_function,
            &call_data,
        )?;
    }

    Ok(!call_data.is_empty())
}

/// A utility to get a predicate which can be passed to inline_some_function_calls() based on
/// certain sizes of the function.  If a constraint is None then any size is assumed to be
/// acceptable.
///
/// The max_stack_size is a bit tricky, as the IR doesn't really know (or care) about the size of
/// types.  See the source code for how it works.

pub fn is_small_fn(
    max_blocks: Option<usize>,
    max_instrs: Option<usize>,
    max_stack_size: Option<usize>,
) -> impl Fn(&Context, &Function, &Value) -> bool {
    fn count_type_elements(context: &Context, ty: &Type) -> usize {
        // This is meant to just be a heuristic rather than be super accurate.
        if ty.is_array(context) {
            count_type_elements(context, &ty.get_array_elem_type(context).unwrap())
                * ty.get_array_len(context).unwrap() as usize
        } else if ty.is_union(context) {
            ty.get_field_types(context)
                .iter()
                .map(|ty| count_type_elements(context, ty))
                .max()
                .unwrap_or(1)
        } else if ty.is_struct(context) {
            ty.get_field_types(context)
                .iter()
                .map(|ty| count_type_elements(context, ty))
                .sum()
        } else {
            1
        }
    }

    move |context: &Context, function: &Function, _call_site: &Value| -> bool {
        max_blocks.map_or(true, |max_block_count| {
            function.num_blocks(context) <= max_block_count
        }) && max_instrs.map_or(true, |max_instrs_count| {
            function.num_instructions_incl_asm_instructions(context) <= max_instrs_count
        }) && max_stack_size.map_or(true, |max_stack_size_count| {
            function
                .locals_iter(context)
                .map(|(_name, ptr)| count_type_elements(context, &ptr.get_inner_type(context)))
                .sum::<usize>()
                <= max_stack_size_count
        })
    }
}

/// Inline a function to a specific call site within another function.
///
/// The destination function, block and call site must be specified along with the function to
/// inline.

pub fn inline_function_call(
    context: &mut Context,
    function: Function,
    block: Block,
    call_site: Value,
    inlined_function: Function,
    call_data: &FxHashMap<Value, RefCell<(Block, Function)>>,
) -> Result<(), IrError> {
    // Split the block at right after the call site.
    let call_site_idx = block
        .instruction_iter(context)
        .position(|v| v == call_site)
        .unwrap();
    let (pre_block, post_block) = block.split_at(context, call_site_idx + 1);
    if post_block != block {
        // We need to update call_data for every call_site that was in block.
        for inst in post_block.instruction_iter(context).filter(|inst| {
            matches!(
                context.values[inst.0].value,
                ValueDatum::Instruction(Instruction {
                    op: InstOp::Call(..),
                    ..
                })
            )
        }) {
            if let Some(call_info) = call_data.get(&inst) {
                call_info.borrow_mut().0 = post_block;
            }
        }
    }

    // Remove the call from the pre_block instructions.  It's still in the context.values[] though.
    pre_block.remove_last_instruction(context);

    // Returned values, if any, go to `post_block`, so a block arg there.
    // We don't expect `post_block` to already have any block args.
    if post_block.new_arg(context, call_site.get_type(context).unwrap()) != 0 {
        panic!("Expected newly created post_block to not have block args")
    }
    function.replace_value(
        context,
        call_site,
        post_block.get_arg(context, 0).unwrap(),
        None,
    );

    // Take the locals from the inlined function and add them to this function.  `value_map` is a
    // map from the original local ptrs to the new ptrs.
    let ptr_map = function.merge_locals_from(context, inlined_function);
    let mut value_map = HashMap::new();

    // Add the mapping from argument values in the inlined function to the args passed to the call.
    if let ValueDatum::Instruction(Instruction {
        op: InstOp::Call(_, passed_vals),
        ..
    }) = &context.values[call_site.0].value
    {
        for (arg_val, passed_val) in context.functions[inlined_function.0]
            .arguments
            .iter()
            .zip(passed_vals.iter())
        {
            value_map.insert(arg_val.1, *passed_val);
        }
    }

    // Get the metadata attached to the function call which may need to be propagated to the
    // inlined instructions.
    let metadata = context.values[call_site.0].metadata;

    // Now remove the call altogether.
    context.values.remove(call_site.0);

    // Insert empty blocks from the inlined function between our split blocks, and create a mapping
    // from old blocks to new.  We need this when inlining branch instructions, so they branch to
    // the new blocks.
    //
    // We map the entry block in the inlined function (which we know must exist) to our `pre_block`
    // from the split above.  We'll start appending inlined instructions to that block rather than
    // a new one (with a redundant branch to it from the `pre_block`).
    let inlined_fn_name = inlined_function.get_name(context).to_owned();
    let mut block_map = HashMap::new();
    let mut block_iter = context.functions[inlined_function.0]
        .blocks
        .clone()
        .into_iter();
    block_map.insert(block_iter.next().unwrap(), pre_block);
    block_map = block_iter.fold(block_map, |mut block_map, inlined_block| {
        let inlined_block_label = inlined_block.get_label(context);
        let new_block = function
            .create_block_before(
                context,
                &post_block,
                Some(format!("{inlined_fn_name}_{inlined_block_label}")),
            )
            .unwrap();
        block_map.insert(inlined_block, new_block);
        // We collect so that context can be mutably borrowed later.
        let inlined_args: Vec<_> = inlined_block.arg_iter(context).copied().collect();
        for inlined_arg in inlined_args {
            if let ValueDatum::Argument(BlockArgument {
                block: _,
                idx: _,
                ty,
            }) = &context.values[inlined_arg.0].value
            {
                let index = new_block.new_arg(context, *ty);
                value_map.insert(inlined_arg, new_block.get_arg(context, index).unwrap());
            } else {
                unreachable!("Expected a block argument")
            }
        }
        block_map
    });

    // We now have a mapping from old blocks to new (currently empty) blocks, and a mapping from
    // old values (locals and args at this stage) to new values.  We can copy instructions over,
    // translating their blocks and values to refer to the new ones.  The value map is still live
    // as we add new instructions which replace the old ones to it too.
    let inlined_blocks = context.functions[inlined_function.0].blocks.clone();
    for block in &inlined_blocks {
        for ins in block.instruction_iter(context) {
            inline_instruction(
                context,
                block_map.get(block).unwrap(),
                &post_block,
                &ins,
                &block_map,
                &mut value_map,
                &ptr_map,
                metadata,
            );
        }
    }

    Ok(())
}

#[allow(clippy::too_many_arguments)]
fn inline_instruction(
    context: &mut Context,
    new_block: &Block,
    post_block: &Block,
    instruction: &Value,
    block_map: &HashMap<Block, Block>,
    value_map: &mut HashMap<Value, Value>,
    local_map: &HashMap<LocalVar, LocalVar>,
    fn_metadata: Option<MetadataIndex>,
) {
    // Util to translate old blocks to new.  If an old block isn't in the map then we panic, since
    // it should be guaranteed to be there...that's a bug otherwise.
    let map_block = |old_block| *block_map.get(&old_block).unwrap();

    // Util to translate old values to new.  If an old value isn't in the map then it (should be)
    // a const, which we can just keep using.
    let map_value = |old_val: Value| value_map.get(&old_val).copied().unwrap_or(old_val);
    let map_local = |old_local| local_map.get(&old_local).copied().unwrap();

    // The instruction needs to be cloned into the new block, with each value and/or block
    // translated using the above maps.  Most of these are relatively cheap as Instructions
    // generally are lightweight, except maybe ASM blocks, but we're able to re-use the block
    // content since it's a black box and not concerned with Values, Blocks or Pointers.
    //
    // We need to clone the instruction here, which is unfortunate.  Maybe in the future we
    // restructure instructions somehow, so we don't need a persistent `&Context` to access them.
    if let ValueContent {
        value: ValueDatum::Instruction(old_ins),
        metadata: val_metadata,
    } = context.values[instruction.0].clone()
    {
        // Combine the function metadata with this instruction metadata so we don't lose the
        // function metadata after inlining.
        let metadata = combine(context, &fn_metadata, &val_metadata);

        let new_ins = match old_ins.op {
            InstOp::AsmBlock(asm, args) => {
                let new_args = args
                    .iter()
                    .map(|AsmArg { name, initializer }| AsmArg {
                        name: name.clone(),
                        initializer: initializer.map(map_value),
                    })
                    .collect();

                // We can re-use the old asm block with the updated args.
                new_block.append(context).asm_block_from_asm(asm, new_args)
            }
            InstOp::BitCast(value, ty) => new_block.append(context).bitcast(map_value(value), ty),
            InstOp::UnaryOp { op, arg } => new_block.append(context).unary_op(op, map_value(arg)),
            InstOp::BinaryOp { op, arg1, arg2 } => {
                new_block
                    .append(context)
                    .binary_op(op, map_value(arg1), map_value(arg2))
            }
            // For `br` and `cbr` below we don't need to worry about the phi values, they're
            // adjusted later in `inline_function_call()`.
            InstOp::Branch(b) => new_block.append(context).branch(
                map_block(b.block),
                b.args.iter().map(|v| map_value(*v)).collect(),
            ),
            InstOp::Call(f, args) => new_block.append(context).call(
                f,
                args.iter()
                    .map(|old_val: &Value| map_value(*old_val))
                    .collect::<Vec<Value>>()
                    .as_slice(),
            ),
            InstOp::CastPtr(val, ty) => new_block.append(context).cast_ptr(map_value(val), ty),
            InstOp::Cmp(pred, lhs_value, rhs_value) => {
                new_block
                    .append(context)
                    .cmp(pred, map_value(lhs_value), map_value(rhs_value))
            }
            InstOp::ConditionalBranch {
                cond_value,
                true_block,
                false_block,
            } => new_block.append(context).conditional_branch(
                map_value(cond_value),
                map_block(true_block.block),
                map_block(false_block.block),
                true_block.args.iter().map(|v| map_value(*v)).collect(),
                false_block.args.iter().map(|v| map_value(*v)).collect(),
            ),
            InstOp::ContractCall {
                return_type,
                name,
                params,
                coins,
                asset_id,
                gas,
            } => new_block.append(context).contract_call(
                return_type,
                name,
                map_value(params),
                map_value(coins),
                map_value(asset_id),
                map_value(gas),
            ),
            InstOp::FuelVm(fuel_vm_instr) => match fuel_vm_instr {
                FuelVmInstruction::Gtf { index, tx_field_id } => {
                    new_block.append(context).gtf(map_value(index), tx_field_id)
                }
                FuelVmInstruction::Log {
                    log_val,
                    log_ty,
                    log_id,
                } => new_block
                    .append(context)
                    .log(map_value(log_val), log_ty, map_value(log_id)),
                FuelVmInstruction::ReadRegister(reg) => {
                    new_block.append(context).read_register(reg)
                }
                FuelVmInstruction::Revert(val) => new_block.append(context).revert(map_value(val)),
                FuelVmInstruction::JmpMem => new_block.append(context).jmp_mem(),
                FuelVmInstruction::Smo {
                    recipient,
                    message,
                    message_size,
                    coins,
                } => new_block.append(context).smo(
                    map_value(recipient),
                    map_value(message),
                    map_value(message_size),
                    map_value(coins),
                ),
                FuelVmInstruction::StateClear {
                    key,
                    number_of_slots,
                } => new_block
                    .append(context)
                    .state_clear(map_value(key), map_value(number_of_slots)),
                FuelVmInstruction::StateLoadQuadWord {
                    load_val,
                    key,
                    number_of_slots,
                } => new_block.append(context).state_load_quad_word(
                    map_value(load_val),
                    map_value(key),
                    map_value(number_of_slots),
                ),
                FuelVmInstruction::StateLoadWord(key) => {
                    new_block.append(context).state_load_word(map_value(key))
                }
                FuelVmInstruction::StateStoreQuadWord {
                    stored_val,
                    key,
                    number_of_slots,
                } => new_block.append(context).state_store_quad_word(
                    map_value(stored_val),
                    map_value(key),
                    map_value(number_of_slots),
                ),
                FuelVmInstruction::StateStoreWord { stored_val, key } => new_block
                    .append(context)
                    .state_store_word(map_value(stored_val), map_value(key)),
                FuelVmInstruction::WideUnaryOp { op, arg, result } => new_block
                    .append(context)
                    .wide_unary_op(op, map_value(arg), map_value(result)),
                FuelVmInstruction::WideBinaryOp {
                    op,
                    arg1,
                    arg2,
                    result,
                } => new_block.append(context).wide_binary_op(
                    op,
                    map_value(arg1),
                    map_value(arg2),
                    map_value(result),
                ),
                FuelVmInstruction::WideModularOp {
                    op,
                    result,
                    arg1,
                    arg2,
                    arg3,
                } => new_block.append(context).wide_modular_op(
                    op,
                    map_value(result),
                    map_value(arg1),
                    map_value(arg2),
                    map_value(arg3),
                ),
                FuelVmInstruction::WideCmpOp { op, arg1, arg2 } => new_block
                    .append(context)
                    .wide_cmp_op(op, map_value(arg1), map_value(arg2)),
                FuelVmInstruction::Retd { ptr, len } => new_block
                    .append(context)
                    .retd(map_value(ptr), map_value(len)),
            },
            InstOp::GetElemPtr {
                base,
                elem_ptr_ty,
                indices,
            } => {
                let elem_ty = elem_ptr_ty.get_pointee_type(context).unwrap();
                new_block.append(context).get_elem_ptr(
                    map_value(base),
                    elem_ty,
                    indices.iter().map(|idx| map_value(*idx)).collect(),
                )
            }
            InstOp::GetLocal(local_var) => {
                new_block.append(context).get_local(map_local(local_var))
            }
            InstOp::GetConfig(module, name) => new_block.append(context).get_config(module, name),
            InstOp::IntToPtr(value, ty) => {
                new_block.append(context).int_to_ptr(map_value(value), ty)
            }
            InstOp::Load(src_val) => new_block.append(context).load(map_value(src_val)),
            InstOp::MemCopyBytes {
                dst_val_ptr,
                src_val_ptr,
                byte_len,
            } => new_block.append(context).mem_copy_bytes(
                map_value(dst_val_ptr),
                map_value(src_val_ptr),
                byte_len,
            ),
            InstOp::MemCopyVal {
                dst_val_ptr,
                src_val_ptr,
            } => new_block
                .append(context)
                .mem_copy_val(map_value(dst_val_ptr), map_value(src_val_ptr)),
            InstOp::Nop => new_block.append(context).nop(),
            InstOp::PtrToInt(value, ty) => {
                new_block.append(context).ptr_to_int(map_value(value), ty)
            }
            // We convert `ret` to `br post_block` and add the returned value as a phi value.
            InstOp::Ret(val, _) => new_block
                .append(context)
                .branch(*post_block, vec![map_value(val)]),
            InstOp::Store {
                dst_val_ptr,
                stored_val,
            } => new_block
                .append(context)
                .store(map_value(dst_val_ptr), map_value(stored_val)),
        }
        .add_metadatum(context, metadata);

        value_map.insert(*instruction, new_ins);
    }
}