sway_ir/optimize/
simplify_cfg.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
//! ## Simplify Control Flow Graph
//!
//! The optimizations here aim to reduce the complexity in control flow by removing basic blocks.
//! This may be done by removing 'dead' blocks which are no longer called (or in other words, have
//! no predecessors) or by merging blocks which are linked by a single unconditional branch.
//!
//! Removing blocks will make the IR neater and more efficient but will also remove indirection of
//! data flow via PHI instructions which in turn can make analyses for passes like constant folding
//! much simpler.

use rustc_hash::{FxHashMap, FxHashSet};

use crate::{
    block::Block, context::Context, error::IrError, function::Function, instruction::InstOp,
    value::ValueDatum, AnalysisResults, BranchToWithArgs, Instruction, InstructionInserter, Pass,
    PassMutability, ScopedPass, Value,
};

pub const SIMPLIFY_CFG_NAME: &str = "simplify-cfg";

pub fn create_simplify_cfg_pass() -> Pass {
    Pass {
        name: SIMPLIFY_CFG_NAME,
        descr: "Simplify the control flow graph (CFG)",
        deps: vec![],
        runner: ScopedPass::FunctionPass(PassMutability::Transform(simplify_cfg)),
    }
}

pub fn simplify_cfg(
    context: &mut Context,
    _: &AnalysisResults,
    function: Function,
) -> Result<bool, IrError> {
    let mut modified = false;
    modified |= remove_dead_blocks(context, &function)?;
    modified |= merge_blocks(context, &function)?;
    modified |= unlink_empty_blocks(context, &function)?;
    modified |= remove_dead_blocks(context, &function)?;
    Ok(modified)
}

fn unlink_empty_blocks(context: &mut Context, function: &Function) -> Result<bool, IrError> {
    let mut modified = false;
    let candidates: Vec<_> = function
        .block_iter(context)
        .skip(1)
        .filter_map(|block| {
            match block.get_terminator(context) {
                // Except for a branch, we don't want anything else.
                // If the block has PHI nodes, then values merge here. Cannot remove the block.
                Some(Instruction {
                    op: InstOp::Branch(to_block),
                    ..
                }) if block.num_instructions(context) <= 1 && block.num_args(context) == 0 => {
                    Some((block, to_block.clone()))
                }
                _ => None,
            }
        })
        .collect();
    for (
        block,
        BranchToWithArgs {
            block: to_block,
            args: cur_params,
        },
    ) in candidates
    {
        // If `to_block`'s predecessors and `block`'s predecessors intersect,
        // AND `to_block` has an arg, then we have that pred branching to to_block
        // with different args. While that's valid IR, it's harder to generate
        // ASM for it, so let's just skip that for now.
        if to_block.num_args(context) > 0
            && to_block.pred_iter(context).any(|to_block_pred| {
                block
                    .pred_iter(context)
                    .any(|block_pred| block_pred == to_block_pred)
            })
        {
            // We cannot filter this out in candidates itself because this condition
            // may get updated *during* this optimization (i.e., inside this loop).
            continue;
        }
        let preds: Vec<_> = block.pred_iter(context).copied().collect();
        for pred in preds {
            // Whatever parameters "block" passed to "to_block", that
            // should now go from "pred" to "to_block".
            let params_from_pred = pred.get_succ_params(context, &block);
            let new_params = cur_params
                .iter()
                .map(|cur_param| match &context.values[cur_param.0].value {
                    ValueDatum::Argument(arg) if arg.block == block => {
                        // An argument should map to the actual parameter passed.
                        params_from_pred[arg.idx]
                    }
                    _ => *cur_param,
                })
                .collect();

            pred.replace_successor(context, block, to_block, new_params);
            modified = true;
        }
    }
    Ok(modified)
}

fn remove_dead_blocks(context: &mut Context, function: &Function) -> Result<bool, IrError> {
    let mut worklist = Vec::<Block>::new();
    let mut reachable = std::collections::HashSet::<Block>::new();

    // The entry is always reachable. Let's begin with that.
    let entry_block = function.get_entry_block(context);
    reachable.insert(entry_block);
    worklist.push(entry_block);

    // Mark reachable nodes.
    while let Some(block) = worklist.pop() {
        let succs = block.successors(context);
        for BranchToWithArgs { block: succ, .. } in succs {
            // If this isn't already marked reachable, we mark it and add to the worklist.
            if !reachable.contains(&succ) {
                reachable.insert(succ);
                worklist.push(succ);
            }
        }
    }

    // Delete all unreachable nodes.
    let mut modified = false;
    for block in function.block_iter(context) {
        if !reachable.contains(&block) {
            modified = true;

            for BranchToWithArgs { block: succ, .. } in block.successors(context) {
                succ.remove_pred(context, &block);
            }

            function.remove_block(context, &block)?;
        }
    }

    Ok(modified)
}

fn merge_blocks(context: &mut Context, function: &Function) -> Result<bool, IrError> {
    // Check if block branches solely to another block B, and that B has exactly one predecessor.
    fn check_candidate(context: &Context, from_block: Block) -> Option<(Block, Block)> {
        from_block
            .get_terminator(context)
            .and_then(|term| match term {
                Instruction {
                    op:
                        InstOp::Branch(BranchToWithArgs {
                            block: to_block, ..
                        }),
                    ..
                } if to_block.num_predecessors(context) == 1 => Some((from_block, *to_block)),
                _ => None,
            })
    }

    let blocks: Vec<_> = function.block_iter(context).collect();
    let mut deleted_blocks = FxHashSet::<Block>::default();
    let mut replace_map: FxHashMap<Value, Value> = FxHashMap::default();
    let mut modified = false;

    for from_block in blocks {
        if deleted_blocks.contains(&from_block) {
            continue;
        }

        // Find a block with an unconditional branch terminator which branches to a block with that
        // single predecessor.
        let twin_blocks = check_candidate(context, from_block);

        // If not found then abort here.
        let mut block_chain = match twin_blocks {
            Some((from_block, to_block)) => vec![from_block, to_block],
            None => continue,
        };

        // There may be more blocks which are also singly paired with these twins, so iteratively
        // search for more blocks in a chain which can be all merged into one.
        loop {
            match check_candidate(context, block_chain.last().copied().unwrap()) {
                None => {
                    // There is no twin for this block.
                    break;
                }
                Some(next_pair) => {
                    block_chain.push(next_pair.1);
                }
            }
        }

        // Keep a copy of the final block in the chain so we can adjust the successors below.
        let final_to_block = block_chain.last().copied().unwrap();
        let final_to_block_succs = final_to_block.successors(context);

        // The first block in the chain will be extended with the contents of the rest of the blocks in
        // the chain, which we'll call `from_block` since we're branching from here to the next one.
        let mut block_chain = block_chain.into_iter();
        let from_block = block_chain.next().unwrap();

        // Loop for the rest of the chain, to all the `to_block`s.
        for to_block in block_chain {
            let from_params = from_block.get_succ_params(context, &to_block);
            // We collect here so that we can have &mut Context later on.
            let to_blocks: Vec<_> = to_block.arg_iter(context).copied().enumerate().collect();
            for (arg_idx, to_block_arg) in to_blocks {
                // replace all uses of `to_block_arg` with the parameter from `from_block`.
                replace_map.insert(to_block_arg, from_params[arg_idx]);
            }

            // Update the parent block field for every instruction
            // in `to_block` to `from_block`.
            for val in to_block.instruction_iter(context) {
                let instr = val.get_instruction_mut(context).unwrap();
                instr.parent = from_block;
            }

            // Drop the terminator from `from_block`.
            from_block.remove_last_instruction(context);

            // Move instructions from `to_block` to `from_block`.
            let to_block_instructions = to_block.instruction_iter(context).collect::<Vec<_>>();
            let mut inserter =
                InstructionInserter::new(context, from_block, crate::InsertionPosition::End);
            inserter.insert_slice(&to_block_instructions);

            // Remove `to_block`.
            function.remove_block(context, &to_block)?;
            deleted_blocks.insert(to_block);
        }

        // Adjust the successors to the final `to_block` to now be successors of the fully merged
        // `from_block`.
        for BranchToWithArgs { block: succ, .. } in final_to_block_succs {
            succ.replace_pred(context, &final_to_block, &from_block)
        }
        modified = true;
    }

    if !replace_map.is_empty() {
        assert!(modified);
        function.replace_values(context, &replace_map, None);
    }

    Ok(modified)
}