1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
//! Common types and errors used in `symbolic`.
use std::borrow::Cow;
use std::fmt;
use std::str;
#[cfg(feature = "serde")]
use serde_::{Deserialize, Serialize};
/// Represents a family of CPUs.
///
/// This is strongly connected to the [`Arch`] type, but reduces the selection to a range of
/// families with distinct properties, such as a generally common instruction set and pointer size.
///
/// This enumeration is represented as `u32` for C-bindings and lowlevel APIs.
///
/// [`Arch`]: enum.Arch.html
#[repr(u32)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum CpuFamily {
/// Any other CPU family that is not explicitly supported.
Unknown = 0,
/// 32-bit little-endian CPUs using the Intel 8086 instruction set, also known as `x86`.
Intel32 = 1,
/// 64-bit little-endian, also known as `x86_64`, now widely used by Intel and AMD.
Amd64 = 2,
/// 32-bit ARM.
Arm32 = 3,
/// 64-bit ARM (e.g. ARMv8-A).
Arm64 = 4,
/// 32-bit big-endian PowerPC.
Ppc32 = 5,
/// 64-bit big-endian PowerPC.
Ppc64 = 6,
/// 32-bit MIPS.
Mips32 = 7,
/// 64-bit MIPS.
Mips64 = 8,
/// ILP32 ABI on 64-bit ARM.
Arm64_32 = 9,
/// Virtual WASM 32-bit architecture.
Wasm32 = 10,
}
impl CpuFamily {
/// Returns the native pointer size.
///
/// This commonly defines the size of CPU registers including the instruction pointer, and the
/// size of all pointers on the platform.
///
/// This function returns `None` if the CPU family is unknown.
///
/// # Examples
///
/// ```
/// use symbolic_common::CpuFamily;
///
/// assert_eq!(CpuFamily::Amd64.pointer_size(), Some(8));
/// assert_eq!(CpuFamily::Intel32.pointer_size(), Some(4));
/// ```
pub fn pointer_size(self) -> Option<usize> {
match self {
CpuFamily::Unknown => None,
CpuFamily::Wasm32 => Some(4),
CpuFamily::Amd64
| CpuFamily::Arm64
| CpuFamily::Ppc64
| CpuFamily::Mips64
| CpuFamily::Arm64_32 => Some(8),
CpuFamily::Intel32 | CpuFamily::Arm32 | CpuFamily::Ppc32 | CpuFamily::Mips32 => Some(4),
}
}
/// Returns instruction alignment if fixed.
///
/// Some instruction sets, such as Intel's x86, use variable length instruction encoding.
/// Others, such as ARM, have fixed length instructions. This method returns `Some` for fixed
/// size instructions and `None` for variable-length instruction sizes.
///
/// # Examples
///
/// ```
/// use symbolic_common::CpuFamily;
///
/// // variable length on x86_64:
/// assert_eq!(CpuFamily::Amd64.instruction_alignment(), None);
///
/// // 4-byte alignment on all 64-bit ARM variants:
/// assert_eq!(CpuFamily::Arm64.instruction_alignment(), Some(4));
/// ```
pub fn instruction_alignment(self) -> Option<u64> {
match self {
CpuFamily::Wasm32 => Some(4),
CpuFamily::Arm32 => Some(2),
CpuFamily::Arm64 | CpuFamily::Arm64_32 => Some(4),
CpuFamily::Ppc32 | CpuFamily::Mips32 | CpuFamily::Mips64 => Some(4),
CpuFamily::Ppc64 => Some(8),
CpuFamily::Intel32 | CpuFamily::Amd64 => None,
CpuFamily::Unknown => None,
}
}
/// Returns the name of the instruction pointer register.
///
/// The instruction pointer register holds a pointer to currrent code execution at all times.
/// This is a differrent register on each CPU family. The size of the value in this register is
/// specified by [`pointer_size`].
///
/// Returns `None` if the CPU family is unknown.
///
/// # Examples
///
/// ```
/// use symbolic_common::CpuFamily;
///
/// assert_eq!(CpuFamily::Amd64.ip_register_name(), Some("rip"));
/// ```
///
/// [`pointer_size`]: enum.CpuFamily.html#method.pointer_size
pub fn ip_register_name(self) -> Option<&'static str> {
// NOTE: These values do not correspond to the register names defined in this file, but to
// the names exposed by breakpad. This mapping is implemented in `data_structures.cpp`.
match self {
CpuFamily::Intel32 => Some("eip"),
CpuFamily::Amd64 => Some("rip"),
CpuFamily::Arm32 | CpuFamily::Arm64 | CpuFamily::Arm64_32 => Some("pc"),
CpuFamily::Ppc32 | CpuFamily::Ppc64 => Some("srr0"),
CpuFamily::Mips32 | CpuFamily::Mips64 => Some("pc"),
CpuFamily::Wasm32 => None,
CpuFamily::Unknown => None,
}
}
}
impl Default for CpuFamily {
fn default() -> Self {
CpuFamily::Unknown
}
}
/// An error returned for an invalid [`Arch`](enum.Arch.html).
#[derive(Debug)]
pub struct UnknownArchError;
impl fmt::Display for UnknownArchError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "unknown architecture")
}
}
impl std::error::Error for UnknownArchError {}
/// An enumeration of CPU architectures and variants.
///
/// The architectues are grouped into families, which can be retrieved by [`cpu_family`]. There are
/// `*Unknown` variants for each architecture to maintain forward-compatibility. This allows to
/// support architectures where the family is known but the subtype is not.
///
/// Each architecture has a canonical name, returned by [`Arch::name`]. Likewise, architectures can
/// be parsed from their string names. In addition to that, in some cases aliases are supported. For
/// instance, `"x86"` is aliased as `"i386"`.
///
/// This enumeration is represented as `u32` for C-bindings and lowlevel APIs. The values are
/// grouped by CPU family for forward compatibility.
///
/// [`cpu_family`]: enum.Arch.html#method.cpu_family
/// [`Arch::name`]: enum.Arch.html#method.name
#[repr(u32)]
#[non_exhaustive]
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Arch {
Unknown = 0,
X86 = 101,
X86Unknown = 199,
Amd64 = 201,
Amd64h = 202,
Amd64Unknown = 299,
Arm = 301,
ArmV5 = 302,
ArmV6 = 303,
ArmV6m = 304,
ArmV7 = 305,
ArmV7f = 306,
ArmV7s = 307,
ArmV7k = 308,
ArmV7m = 309,
ArmV7em = 310,
ArmUnknown = 399,
Arm64 = 401,
Arm64V8 = 402,
Arm64e = 403,
Arm64Unknown = 499,
Ppc = 501,
Ppc64 = 601,
Mips = 701,
Mips64 = 801,
Arm64_32 = 901,
Arm64_32V8 = 902,
Arm64_32Unknown = 999,
Wasm32 = 1001,
}
impl Arch {
/// Creates an `Arch` from its `u32` representation.
///
/// Returns `Arch::Unknown` for all unknown values.
///
/// # Examples
///
/// ```
/// use symbolic_common::Arch;
///
/// // Will print "X86"
/// println!("{:?}", Arch::from_u32(101));
/// ```
pub fn from_u32(val: u32) -> Arch {
match val {
0 => Arch::Unknown,
1 | 101 => Arch::X86,
199 => Arch::X86Unknown,
2 | 201 => Arch::Amd64,
3 | 202 => Arch::Amd64h,
299 => Arch::Amd64Unknown,
4 | 301 => Arch::Arm,
5 | 302 => Arch::ArmV5,
6 | 303 => Arch::ArmV6,
7 | 304 => Arch::ArmV6m,
8 | 305 => Arch::ArmV7,
9 | 306 => Arch::ArmV7f,
10 | 307 => Arch::ArmV7s,
11 | 308 => Arch::ArmV7k,
12 | 309 => Arch::ArmV7m,
13 | 310 => Arch::ArmV7em,
399 => Arch::ArmUnknown,
14 | 401 => Arch::Arm64,
15 | 402 => Arch::Arm64V8,
16 | 403 => Arch::Arm64e,
499 => Arch::Arm64Unknown,
17 | 501 => Arch::Ppc,
18 | 601 => Arch::Ppc64,
701 => Arch::Mips,
801 => Arch::Mips64,
901 => Arch::Arm64_32,
902 => Arch::Arm64_32V8,
999 => Arch::Arm64_32Unknown,
1001 => Arch::Wasm32,
_ => Arch::Unknown,
}
}
/// Returns the CPU family of the CPU architecture.
///
/// # Examples
///
/// ```
/// use symbolic_common::Arch;
///
/// // Will print "Intel32"
/// println!("{:?}", Arch::X86.cpu_family());
/// ```
pub fn cpu_family(self) -> CpuFamily {
match self {
Arch::Unknown => CpuFamily::Unknown,
Arch::X86 | Arch::X86Unknown => CpuFamily::Intel32,
Arch::Amd64 | Arch::Amd64h | Arch::Amd64Unknown => CpuFamily::Amd64,
Arch::Arm64 | Arch::Arm64V8 | Arch::Arm64e | Arch::Arm64Unknown => CpuFamily::Arm64,
Arch::Arm
| Arch::ArmV5
| Arch::ArmV6
| Arch::ArmV6m
| Arch::ArmV7
| Arch::ArmV7f
| Arch::ArmV7s
| Arch::ArmV7k
| Arch::ArmV7m
| Arch::ArmV7em
| Arch::ArmUnknown => CpuFamily::Arm32,
Arch::Ppc => CpuFamily::Ppc32,
Arch::Ppc64 => CpuFamily::Ppc64,
Arch::Mips => CpuFamily::Mips32,
Arch::Mips64 => CpuFamily::Mips64,
Arch::Arm64_32 | Arch::Arm64_32V8 | Arch::Arm64_32Unknown => CpuFamily::Arm64_32,
Arch::Wasm32 => CpuFamily::Wasm32,
}
}
/// Returns the canonical name of the CPU architecture.
///
/// This follows the Apple conventions for naming architectures. For instance, Intel 32-bit
/// architectures are canonically named `"x86"`, even though `"i386"` would also be a valid
/// name.
///
/// For architectures with variants or subtypes, that subtype is encoded into the name. For
/// instance the ARM v7-M architecture is named with a full `"armv7m".
///
/// # Examples
///
/// ```
/// use symbolic_common::Arch;
///
/// // Will print "x86"
/// println!("{}", Arch::X86.name());
/// ```
pub fn name(self) -> &'static str {
match self {
Arch::Unknown => "unknown",
Arch::Wasm32 => "wasm32",
Arch::X86 => "x86",
Arch::X86Unknown => "x86_unknown",
Arch::Amd64 => "x86_64",
Arch::Amd64h => "x86_64h",
Arch::Amd64Unknown => "x86_64_unknown",
Arch::Arm64 => "arm64",
Arch::Arm64V8 => "arm64v8",
Arch::Arm64e => "arm64e",
Arch::Arm64Unknown => "arm64_unknown",
Arch::Arm => "arm",
Arch::ArmV5 => "armv5",
Arch::ArmV6 => "armv6",
Arch::ArmV6m => "armv6m",
Arch::ArmV7 => "armv7",
Arch::ArmV7f => "armv7f",
Arch::ArmV7s => "armv7s",
Arch::ArmV7k => "armv7k",
Arch::ArmV7m => "armv7m",
Arch::ArmV7em => "armv7em",
Arch::ArmUnknown => "arm_unknown",
Arch::Ppc => "ppc",
Arch::Ppc64 => "ppc64",
Arch::Mips => "mips",
Arch::Mips64 => "mips64",
Arch::Arm64_32 => "arm64_32",
Arch::Arm64_32V8 => "arm64_32_v8",
Arch::Arm64_32Unknown => "arm64_32_unknown",
}
}
/// Returns whether this architecture is well-known.
///
/// This is trivially `true` for all architectures other than the `*Unknown` variants.
///
/// # Examples
///
/// ```
/// use symbolic_common::Arch;
///
/// assert!(Arch::X86.well_known());
/// assert!(!Arch::X86Unknown.well_known());
/// ```
pub fn well_known(self) -> bool {
!matches!(
self,
Arch::Unknown
| Arch::ArmUnknown
| Arch::Arm64Unknown
| Arch::X86Unknown
| Arch::Amd64Unknown
| Arch::Arm64_32Unknown
)
}
}
impl Default for Arch {
fn default() -> Arch {
Arch::Unknown
}
}
impl fmt::Display for Arch {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.name())
}
}
impl str::FromStr for Arch {
type Err = UnknownArchError;
fn from_str(string: &str) -> Result<Arch, UnknownArchError> {
Ok(match string.to_ascii_lowercase().as_str() {
"unknown" => Arch::Unknown,
// this is an alias that is known among macho users
"i386" => Arch::X86,
"x86" => Arch::X86,
"x86_unknown" => Arch::X86Unknown,
"x86_64" | "amd64" => Arch::Amd64,
"x86_64h" => Arch::Amd64h,
"x86_64_unknown" => Arch::Amd64Unknown,
"arm64" => Arch::Arm64,
"arm64v8" => Arch::Arm64V8,
"arm64e" => Arch::Arm64e,
"arm64_unknown" => Arch::Arm64Unknown,
"arm" => Arch::Arm,
"armv5" => Arch::ArmV5,
"armv6" => Arch::ArmV6,
"armv6m" => Arch::ArmV6m,
"armv7" => Arch::ArmV7,
"armv7f" => Arch::ArmV7f,
"armv7s" => Arch::ArmV7s,
"armv7k" => Arch::ArmV7k,
"armv7m" => Arch::ArmV7m,
"armv7em" => Arch::ArmV7em,
"arm_unknown" => Arch::ArmUnknown,
"ppc" => Arch::Ppc,
"ppc64" => Arch::Ppc64,
"mips" => Arch::Mips,
"mips64" => Arch::Mips64,
"arm64_32" => Arch::Arm64_32,
"arm64_32_v8" => Arch::Arm64_32V8,
"arm64_32_unknown" => Arch::Arm64_32Unknown,
// apple crash report variants
"x86-64" => Arch::Amd64,
"arm-64" => Arch::Arm64,
// wasm extensions
"wasm32" => Arch::Wasm32,
_ => return Err(UnknownArchError),
})
}
}
/// An error returned for an invalid [`Language`](enum.Language.html).
#[derive(Debug)]
pub struct UnknownLanguageError;
impl fmt::Display for UnknownLanguageError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "unknown language")
}
}
impl std::error::Error for UnknownLanguageError {}
/// A programming language declared in debugging information.
///
/// In the context of function names or source code, the lanugage can help to determine appropriate
/// strategies for demangling names or syntax highlighting. See the [`Name`] type, which declares a
/// function name with an optional language.
///
/// This enumeration is represented as `u32` for C-bindings and lowlevel APIs.
///
/// [`Name`]: struct.Name.html
#[repr(u32)]
#[non_exhaustive]
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Language {
Unknown = 0,
C = 1,
Cpp = 2,
D = 3,
Go = 4,
ObjC = 5,
ObjCpp = 6,
Rust = 7,
Swift = 8,
CSharp = 9,
VisualBasic = 10,
FSharp = 11,
}
impl Language {
/// Creates an `Language` from its `u32` representation.
///
/// Returns `Language::Unknown` for all unknown values.
///
/// # Examples
///
/// ```
/// use symbolic_common::Language;
///
/// // Will print "C"
/// println!("{:?}", Language::from_u32(1));
/// ```
pub fn from_u32(val: u32) -> Language {
match val {
0 => Self::Unknown,
1 => Self::C,
2 => Self::Cpp,
3 => Self::D,
4 => Self::Go,
5 => Self::ObjC,
6 => Self::ObjCpp,
7 => Self::Rust,
8 => Self::Swift,
9 => Self::CSharp,
10 => Self::VisualBasic,
11 => Self::FSharp,
_ => Self::Unknown,
}
}
/// Returns the name of the language.
///
/// The name is always given in lower case without special characters or spaces, suitable for
/// serialization and parsing. For a human readable name, use the `Display` implementation,
/// instead.
///
/// # Examples
///
/// ```
/// use symbolic_common::Language;
///
/// // Will print "objcpp"
/// println!("{}", Language::ObjCpp.name());
///
/// // Will print "Objective-C++"
/// println!("{}", Language::ObjCpp);
/// ```
pub fn name(self) -> &'static str {
match self {
Language::Unknown => "unknown",
Language::C => "c",
Language::Cpp => "cpp",
Language::D => "d",
Language::Go => "go",
Language::ObjC => "objc",
Language::ObjCpp => "objcpp",
Language::Rust => "rust",
Language::Swift => "swift",
Language::CSharp => "csharp",
Language::VisualBasic => "visualbasic",
Language::FSharp => "fsharp",
}
}
}
impl Default for Language {
fn default() -> Language {
Language::Unknown
}
}
impl fmt::Display for Language {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let formatted = match *self {
Language::Unknown => "unknown",
Language::C => "C",
Language::Cpp => "C++",
Language::D => "D",
Language::Go => "Go",
Language::ObjC => "Objective-C",
Language::ObjCpp => "Objective-C++",
Language::Rust => "Rust",
Language::Swift => "Swift",
Language::CSharp => "C#",
Language::VisualBasic => "Visual Basic",
Language::FSharp => "F#",
};
write!(f, "{}", formatted)
}
}
impl str::FromStr for Language {
type Err = UnknownLanguageError;
fn from_str(string: &str) -> Result<Language, UnknownLanguageError> {
Ok(match string {
"unknown" => Language::Unknown,
"c" => Language::C,
"cpp" => Language::Cpp,
"d" => Language::D,
"go" => Language::Go,
"objc" => Language::ObjC,
"objcpp" => Language::ObjCpp,
"rust" => Language::Rust,
"swift" => Language::Swift,
"csharp" => Language::CSharp,
"visualbasic" => Language::VisualBasic,
"fsharp" => Language::FSharp,
_ => return Err(UnknownLanguageError),
})
}
}
/// A [`Name`]s mangling state.
///
/// By default, the mangling of a [`Name`] is not known, but an explicit mangling state can be set
/// for Names that are guaranteed to be unmangled.
#[cfg_attr(
feature = "serde",
derive(Serialize, Deserialize),
serde(crate = "serde_")
)]
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum NameMangling {
/// The [`Name`] is definitely mangled.
Mangled,
/// The [`Name`] is not mangled.
Unmangled,
/// The mangling of the [`Name`] is not known.
Unknown,
}
impl Default for NameMangling {
fn default() -> Self {
NameMangling::Unknown
}
}
/// The name of a potentially mangled symbol.
///
/// Debugging information often only contains mangled names in their symbol and debug information
/// data. The mangling schema depends on the compiler and programming language. `Name` is a wrapper
/// type for potentially mangled names and an optionally declared language. To demangle the name,
/// see the `demangle` feature of `symbolic`.
///
/// Not all sources declare a programming language. In such a case, the [`language`] will be
/// `Unknown`. However, it may still be inferred for demangling by inspecting the mangled string.
///
/// Names can refer either functions, types, fields, or virtual constructs. Their semantics are
/// fully defined by the language and the compiler.
///
/// # Examples
///
/// Create a name and print it:
///
/// ```
/// use symbolic_common::Name;
///
/// let name = Name::from("_ZN3foo3barEv");
/// assert_eq!(name.to_string(), "_ZN3foo3barEv");
/// ```
///
/// Create a name with a language and explicit mangling state.
/// Alternate formatting prints the language:
///
/// ```
/// use symbolic_common::{Language, Name, NameMangling};
///
/// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
/// assert_eq!(format!("{:#}", name), "_ZN3foo3barEv [C++]");
/// ```
///
/// [`language`]: struct.Name.html#method.language
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(
feature = "serde",
derive(Serialize, Deserialize),
serde(crate = "serde_")
)]
pub struct Name<'a> {
string: Cow<'a, str>,
lang: Language,
#[cfg_attr(feature = "serde", serde(default))]
mangling: NameMangling,
}
impl<'a> Name<'a> {
/// Constructs a new Name with given mangling and language.
///
/// In case both the mangling state and the language are unknown, a simpler alternative to use
/// is [`Name::from`].
///
///
/// # Example
///
/// ```
/// use symbolic_common::{Language, Name, NameMangling};
///
/// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
/// assert_eq!(format!("{:#}", name), "_ZN3foo3barEv [C++]");
/// ```
#[inline]
pub fn new<S>(string: S, mangling: NameMangling, lang: Language) -> Self
where
S: Into<Cow<'a, str>>,
{
Name {
string: string.into(),
lang,
mangling,
}
}
/// Returns the raw, mangled string of the name.
///
/// # Example
///
/// ```
/// use symbolic_common::{Language, Name, NameMangling};
///
/// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
/// assert_eq!(name.as_str(), "_ZN3foo3barEv");
/// ```
///
/// This is also available as an `AsRef<str>` implementation:
///
/// ```
/// use symbolic_common::{Language, Name, NameMangling};
///
/// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
/// assert_eq!(name.as_ref(), "_ZN3foo3barEv");
/// ```
pub fn as_str(&self) -> &str {
&self.string
}
/// Set the `Name`'s language.
pub fn set_language(&mut self, language: Language) -> &mut Self {
self.lang = language;
self
}
/// The language of the mangled symbol.
///
/// If the language is not declared in the source, this returns `Language::Unknown`. The
/// language may still be inferred using `detect_language`, which is declared on the `Demangle`
/// extension trait.
///
/// # Example
///
/// ```
/// use symbolic_common::{Language, Name, NameMangling};
///
/// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
/// assert_eq!(name.language(), Language::Cpp);
/// ```
pub fn language(&self) -> Language {
self.lang
}
/// Set the `Name`'s mangling state.
pub fn set_mangling(&mut self, mangling: NameMangling) -> &mut Self {
self.mangling = mangling;
self
}
/// Returns the `Name`'s mangling state.
///
/// # Example
///
/// ```
/// use symbolic_common::{Language, Name, NameMangling};
///
/// let unmangled = Name::new("foo::bar", NameMangling::Unmangled, Language::Unknown);
/// assert_eq!(unmangled.mangling(), NameMangling::Unmangled);
/// ```
pub fn mangling(&self) -> NameMangling {
self.mangling
}
/// Converts this name into a [`Cow`].
///
/// # Example
///
/// ```
/// use symbolic_common::Name;
///
/// let name = Name::from("_ZN3foo3barEv");
/// assert_eq!(name.into_cow(), "_ZN3foo3barEv");
/// ```
pub fn into_cow(self) -> Cow<'a, str> {
self.string
}
/// Converts this name into a [`String`].
///
/// # Example
///
/// ```
/// use symbolic_common::Name;
///
/// let name = Name::from("_ZN3foo3barEv");
/// assert_eq!(name.into_string(), "_ZN3foo3barEv");
/// ```
pub fn into_string(self) -> String {
self.string.into_owned()
}
}
impl AsRef<str> for Name<'_> {
fn as_ref(&self) -> &str {
self.as_str()
}
}
impl From<Name<'_>> for String {
fn from(name: Name) -> Self {
name.string.into()
}
}
impl<'a, S> From<S> for Name<'a>
where
S: Into<Cow<'a, str>>,
{
fn from(string: S) -> Self {
Self::new(string, NameMangling::Unknown, Language::Unknown)
}
}
impl fmt::Display for Name<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.as_str())?;
if f.alternate() && self.lang != Language::Unknown {
write!(f, " [{}]", self.lang)?;
}
Ok(())
}
}
macro_rules! impl_eq {
($lhs:ty, $rhs: ty) => {
#[allow(clippy::extra_unused_lifetimes)]
impl<'a, 'b> PartialEq<$rhs> for $lhs {
#[inline]
fn eq(&self, other: &$rhs) -> bool {
PartialEq::eq(&self.string, other)
}
}
#[allow(clippy::extra_unused_lifetimes)]
impl<'a, 'b> PartialEq<$lhs> for $rhs {
#[inline]
fn eq(&self, other: &$lhs) -> bool {
PartialEq::eq(self, &other.string)
}
}
};
}
impl_eq! { Name<'a>, str }
impl_eq! { Name<'a>, &'b str }
impl_eq! { Name<'a>, String }
impl_eq! { Name<'a>, std::borrow::Cow<'b, str> }
#[cfg(feature = "serde")]
mod derive_serde {
/// Helper macro to implement string based serialization and deserialization.
///
/// If a type implements `FromStr` and `Display` then this automatically
/// implements a serializer/deserializer for that type that dispatches
/// appropriately.
macro_rules! impl_str_serde {
($type:ty) => {
impl ::serde_::ser::Serialize for $type {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ::serde_::ser::Serializer,
{
serializer.serialize_str(self.name())
}
}
impl<'de> ::serde_::de::Deserialize<'de> for $type {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: ::serde_::de::Deserializer<'de>,
{
<::std::borrow::Cow<str>>::deserialize(deserializer)?
.parse()
.map_err(::serde_::de::Error::custom)
}
}
};
}
impl_str_serde!(super::Arch);
impl_str_serde!(super::Language);
}