1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
//! Common types and errors used in `symbolic`.

use std::borrow::Cow;
use std::fmt;
use std::str;

#[cfg(feature = "serde")]
use serde_::{Deserialize, Serialize};

/// Represents a family of CPUs.
///
/// This is strongly connected to the [`Arch`] type, but reduces the selection to a range of
/// families with distinct properties, such as a generally common instruction set and pointer size.
///
/// This enumeration is represented as `u32` for C-bindings and lowlevel APIs.
///
/// [`Arch`]: enum.Arch.html
#[repr(u32)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum CpuFamily {
    /// Any other CPU family that is not explicitly supported.
    Unknown = 0,
    /// 32-bit little-endian CPUs using the Intel 8086 instruction set, also known as `x86`.
    Intel32 = 1,
    /// 64-bit little-endian, also known as `x86_64`, now widely used by Intel and AMD.
    Amd64 = 2,
    /// 32-bit ARM.
    Arm32 = 3,
    /// 64-bit ARM (e.g. ARMv8-A).
    Arm64 = 4,
    /// 32-bit big-endian PowerPC.
    Ppc32 = 5,
    /// 64-bit big-endian PowerPC.
    Ppc64 = 6,
    /// 32-bit MIPS.
    Mips32 = 7,
    /// 64-bit MIPS.
    Mips64 = 8,
    /// ILP32 ABI on 64-bit ARM.
    Arm64_32 = 9,
    /// Virtual WASM 32-bit architecture.
    Wasm32 = 10,
}

impl CpuFamily {
    /// Returns the native pointer size.
    ///
    /// This commonly defines the size of CPU registers including the instruction pointer, and the
    /// size of all pointers on the platform.
    ///
    /// This function returns `None` if the CPU family is unknown.
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::CpuFamily;
    ///
    /// assert_eq!(CpuFamily::Amd64.pointer_size(), Some(8));
    /// assert_eq!(CpuFamily::Intel32.pointer_size(), Some(4));
    /// ```
    pub fn pointer_size(self) -> Option<usize> {
        match self {
            CpuFamily::Unknown => None,
            CpuFamily::Wasm32 => Some(4),
            CpuFamily::Amd64
            | CpuFamily::Arm64
            | CpuFamily::Ppc64
            | CpuFamily::Mips64
            | CpuFamily::Arm64_32 => Some(8),
            CpuFamily::Intel32 | CpuFamily::Arm32 | CpuFamily::Ppc32 | CpuFamily::Mips32 => Some(4),
        }
    }

    /// Returns instruction alignment if fixed.
    ///
    /// Some instruction sets, such as Intel's x86, use variable length instruction encoding.
    /// Others, such as ARM, have fixed length instructions. This method returns `Some` for fixed
    /// size instructions and `None` for variable-length instruction sizes.
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::CpuFamily;
    ///
    /// // variable length on x86_64:
    /// assert_eq!(CpuFamily::Amd64.instruction_alignment(), None);
    ///
    /// // 4-byte alignment on all 64-bit ARM variants:
    /// assert_eq!(CpuFamily::Arm64.instruction_alignment(), Some(4));
    /// ```
    pub fn instruction_alignment(self) -> Option<u64> {
        match self {
            CpuFamily::Wasm32 => Some(4),
            CpuFamily::Arm32 => Some(2),
            CpuFamily::Arm64 | CpuFamily::Arm64_32 => Some(4),
            CpuFamily::Ppc32 | CpuFamily::Mips32 | CpuFamily::Mips64 => Some(4),
            CpuFamily::Ppc64 => Some(8),
            CpuFamily::Intel32 | CpuFamily::Amd64 => None,
            CpuFamily::Unknown => None,
        }
    }

    /// Returns the name of the instruction pointer register.
    ///
    /// The instruction pointer register holds a pointer to currrent code execution at all times.
    /// This is a differrent register on each CPU family. The size of the value in this register is
    /// specified by [`pointer_size`].
    ///
    /// Returns `None` if the CPU family is unknown.
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::CpuFamily;
    ///
    /// assert_eq!(CpuFamily::Amd64.ip_register_name(), Some("rip"));
    /// ```
    ///
    /// [`pointer_size`]: enum.CpuFamily.html#method.pointer_size
    pub fn ip_register_name(self) -> Option<&'static str> {
        // NOTE: These values do not correspond to the register names defined in this file, but to
        // the names exposed by breakpad. This mapping is implemented in `data_structures.cpp`.
        match self {
            CpuFamily::Intel32 => Some("eip"),
            CpuFamily::Amd64 => Some("rip"),
            CpuFamily::Arm32 | CpuFamily::Arm64 | CpuFamily::Arm64_32 => Some("pc"),
            CpuFamily::Ppc32 | CpuFamily::Ppc64 => Some("srr0"),
            CpuFamily::Mips32 | CpuFamily::Mips64 => Some("pc"),
            CpuFamily::Wasm32 => None,
            CpuFamily::Unknown => None,
        }
    }
}

impl Default for CpuFamily {
    fn default() -> Self {
        CpuFamily::Unknown
    }
}

/// An error returned for an invalid [`Arch`](enum.Arch.html).
#[derive(Debug)]
pub struct UnknownArchError;

impl fmt::Display for UnknownArchError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "unknown architecture")
    }
}

impl std::error::Error for UnknownArchError {}

/// An enumeration of CPU architectures and variants.
///
/// The architectues are grouped into families, which can be retrieved by [`cpu_family`]. There are
/// `*Unknown` variants for each architecture to maintain forward-compatibility. This allows to
/// support architectures where the family is known but the subtype is not.
///
/// Each architecture has a canonical name, returned by [`Arch::name`]. Likewise, architectures can
/// be parsed from their string names. In addition to that, in some cases aliases are supported. For
/// instance, `"x86"` is aliased as `"i386"`.
///
/// This enumeration is represented as `u32` for C-bindings and lowlevel APIs. The values are
/// grouped by CPU family for forward compatibility.
///
/// [`cpu_family`]: enum.Arch.html#method.cpu_family
/// [`Arch::name`]: enum.Arch.html#method.name
#[repr(u32)]
#[non_exhaustive]
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Arch {
    Unknown = 0,
    X86 = 101,
    X86Unknown = 199,
    Amd64 = 201,
    Amd64h = 202,
    Amd64Unknown = 299,
    Arm = 301,
    ArmV5 = 302,
    ArmV6 = 303,
    ArmV6m = 304,
    ArmV7 = 305,
    ArmV7f = 306,
    ArmV7s = 307,
    ArmV7k = 308,
    ArmV7m = 309,
    ArmV7em = 310,
    ArmUnknown = 399,
    Arm64 = 401,
    Arm64V8 = 402,
    Arm64e = 403,
    Arm64Unknown = 499,
    Ppc = 501,
    Ppc64 = 601,
    Mips = 701,
    Mips64 = 801,
    Arm64_32 = 901,
    Arm64_32V8 = 902,
    Arm64_32Unknown = 999,
    Wasm32 = 1001,
}

impl Arch {
    /// Creates an `Arch` from its `u32` representation.
    ///
    /// Returns `Arch::Unknown` for all unknown values.
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::Arch;
    ///
    /// // Will print "X86"
    /// println!("{:?}", Arch::from_u32(101));
    /// ```
    pub fn from_u32(val: u32) -> Arch {
        match val {
            0 => Arch::Unknown,
            1 | 101 => Arch::X86,
            199 => Arch::X86Unknown,
            2 | 201 => Arch::Amd64,
            3 | 202 => Arch::Amd64h,
            299 => Arch::Amd64Unknown,
            4 | 301 => Arch::Arm,
            5 | 302 => Arch::ArmV5,
            6 | 303 => Arch::ArmV6,
            7 | 304 => Arch::ArmV6m,
            8 | 305 => Arch::ArmV7,
            9 | 306 => Arch::ArmV7f,
            10 | 307 => Arch::ArmV7s,
            11 | 308 => Arch::ArmV7k,
            12 | 309 => Arch::ArmV7m,
            13 | 310 => Arch::ArmV7em,
            399 => Arch::ArmUnknown,
            14 | 401 => Arch::Arm64,
            15 | 402 => Arch::Arm64V8,
            16 | 403 => Arch::Arm64e,
            499 => Arch::Arm64Unknown,
            17 | 501 => Arch::Ppc,
            18 | 601 => Arch::Ppc64,
            701 => Arch::Mips,
            801 => Arch::Mips64,
            901 => Arch::Arm64_32,
            902 => Arch::Arm64_32V8,
            999 => Arch::Arm64_32Unknown,
            1001 => Arch::Wasm32,
            _ => Arch::Unknown,
        }
    }

    /// Returns the CPU family of the CPU architecture.
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::Arch;
    ///
    /// // Will print "Intel32"
    /// println!("{:?}", Arch::X86.cpu_family());
    /// ```
    pub fn cpu_family(self) -> CpuFamily {
        match self {
            Arch::Unknown => CpuFamily::Unknown,
            Arch::X86 | Arch::X86Unknown => CpuFamily::Intel32,
            Arch::Amd64 | Arch::Amd64h | Arch::Amd64Unknown => CpuFamily::Amd64,
            Arch::Arm64 | Arch::Arm64V8 | Arch::Arm64e | Arch::Arm64Unknown => CpuFamily::Arm64,
            Arch::Arm
            | Arch::ArmV5
            | Arch::ArmV6
            | Arch::ArmV6m
            | Arch::ArmV7
            | Arch::ArmV7f
            | Arch::ArmV7s
            | Arch::ArmV7k
            | Arch::ArmV7m
            | Arch::ArmV7em
            | Arch::ArmUnknown => CpuFamily::Arm32,
            Arch::Ppc => CpuFamily::Ppc32,
            Arch::Ppc64 => CpuFamily::Ppc64,
            Arch::Mips => CpuFamily::Mips32,
            Arch::Mips64 => CpuFamily::Mips64,
            Arch::Arm64_32 | Arch::Arm64_32V8 | Arch::Arm64_32Unknown => CpuFamily::Arm64_32,
            Arch::Wasm32 => CpuFamily::Wasm32,
        }
    }

    /// Returns the canonical name of the CPU architecture.
    ///
    /// This follows the Apple conventions for naming architectures. For instance, Intel 32-bit
    /// architectures are canonically named `"x86"`, even though `"i386"` would also be a valid
    /// name.
    ///
    /// For architectures with variants or subtypes, that subtype is encoded into the name. For
    /// instance the ARM v7-M architecture is named with a full `"armv7m".
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::Arch;
    ///
    /// // Will print "x86"
    /// println!("{}", Arch::X86.name());
    /// ```
    pub fn name(self) -> &'static str {
        match self {
            Arch::Unknown => "unknown",
            Arch::Wasm32 => "wasm32",
            Arch::X86 => "x86",
            Arch::X86Unknown => "x86_unknown",
            Arch::Amd64 => "x86_64",
            Arch::Amd64h => "x86_64h",
            Arch::Amd64Unknown => "x86_64_unknown",
            Arch::Arm64 => "arm64",
            Arch::Arm64V8 => "arm64v8",
            Arch::Arm64e => "arm64e",
            Arch::Arm64Unknown => "arm64_unknown",
            Arch::Arm => "arm",
            Arch::ArmV5 => "armv5",
            Arch::ArmV6 => "armv6",
            Arch::ArmV6m => "armv6m",
            Arch::ArmV7 => "armv7",
            Arch::ArmV7f => "armv7f",
            Arch::ArmV7s => "armv7s",
            Arch::ArmV7k => "armv7k",
            Arch::ArmV7m => "armv7m",
            Arch::ArmV7em => "armv7em",
            Arch::ArmUnknown => "arm_unknown",
            Arch::Ppc => "ppc",
            Arch::Ppc64 => "ppc64",
            Arch::Mips => "mips",
            Arch::Mips64 => "mips64",
            Arch::Arm64_32 => "arm64_32",
            Arch::Arm64_32V8 => "arm64_32_v8",
            Arch::Arm64_32Unknown => "arm64_32_unknown",
        }
    }

    /// Returns whether this architecture is well-known.
    ///
    /// This is trivially `true` for all architectures other than the `*Unknown` variants.
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::Arch;
    ///
    /// assert!(Arch::X86.well_known());
    /// assert!(!Arch::X86Unknown.well_known());
    /// ```
    pub fn well_known(self) -> bool {
        !matches!(
            self,
            Arch::Unknown
                | Arch::ArmUnknown
                | Arch::Arm64Unknown
                | Arch::X86Unknown
                | Arch::Amd64Unknown
                | Arch::Arm64_32Unknown
        )
    }
}

impl Default for Arch {
    fn default() -> Arch {
        Arch::Unknown
    }
}

impl fmt::Display for Arch {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.name())
    }
}

impl str::FromStr for Arch {
    type Err = UnknownArchError;

    fn from_str(string: &str) -> Result<Arch, UnknownArchError> {
        Ok(match string.to_ascii_lowercase().as_str() {
            "unknown" => Arch::Unknown,
            // this is an alias that is known among macho users
            "i386" => Arch::X86,
            "x86" => Arch::X86,
            "x86_unknown" => Arch::X86Unknown,
            "x86_64" | "amd64" => Arch::Amd64,
            "x86_64h" => Arch::Amd64h,
            "x86_64_unknown" => Arch::Amd64Unknown,
            "arm64" => Arch::Arm64,
            "arm64v8" => Arch::Arm64V8,
            "arm64e" => Arch::Arm64e,
            "arm64_unknown" => Arch::Arm64Unknown,
            "arm" => Arch::Arm,
            "armv5" => Arch::ArmV5,
            "armv6" => Arch::ArmV6,
            "armv6m" => Arch::ArmV6m,
            "armv7" => Arch::ArmV7,
            "armv7f" => Arch::ArmV7f,
            "armv7s" => Arch::ArmV7s,
            "armv7k" => Arch::ArmV7k,
            "armv7m" => Arch::ArmV7m,
            "armv7em" => Arch::ArmV7em,
            "arm_unknown" => Arch::ArmUnknown,
            "ppc" => Arch::Ppc,
            "ppc64" => Arch::Ppc64,
            "mips" => Arch::Mips,
            "mips64" => Arch::Mips64,
            "arm64_32" => Arch::Arm64_32,
            "arm64_32_v8" => Arch::Arm64_32V8,
            "arm64_32_unknown" => Arch::Arm64_32Unknown,

            // apple crash report variants
            "x86-64" => Arch::Amd64,
            "arm-64" => Arch::Arm64,

            // wasm extensions
            "wasm32" => Arch::Wasm32,

            _ => return Err(UnknownArchError),
        })
    }
}

/// An error returned for an invalid [`Language`](enum.Language.html).
#[derive(Debug)]
pub struct UnknownLanguageError;

impl fmt::Display for UnknownLanguageError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "unknown language")
    }
}

impl std::error::Error for UnknownLanguageError {}

/// A programming language declared in debugging information.
///
/// In the context of function names or source code, the lanugage can help to determine appropriate
/// strategies for demangling names or syntax highlighting. See the [`Name`] type, which declares a
/// function name with an optional language.
///
/// This enumeration is represented as `u32` for C-bindings and lowlevel APIs.
///
/// [`Name`]: struct.Name.html
#[repr(u32)]
#[non_exhaustive]
#[allow(missing_docs)]
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Language {
    Unknown = 0,
    C = 1,
    Cpp = 2,
    D = 3,
    Go = 4,
    ObjC = 5,
    ObjCpp = 6,
    Rust = 7,
    Swift = 8,
    CSharp = 9,
    VisualBasic = 10,
    FSharp = 11,
}

impl Language {
    /// Creates an `Language` from its `u32` representation.
    ///
    /// Returns `Language::Unknown` for all unknown values.
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::Language;
    ///
    /// // Will print "C"
    /// println!("{:?}", Language::from_u32(1));
    /// ```
    pub fn from_u32(val: u32) -> Language {
        match val {
            0 => Self::Unknown,
            1 => Self::C,
            2 => Self::Cpp,
            3 => Self::D,
            4 => Self::Go,
            5 => Self::ObjC,
            6 => Self::ObjCpp,
            7 => Self::Rust,
            8 => Self::Swift,
            9 => Self::CSharp,
            10 => Self::VisualBasic,
            11 => Self::FSharp,
            _ => Self::Unknown,
        }
    }

    /// Returns the name of the language.
    ///
    /// The name is always given in lower case without special characters or spaces, suitable for
    /// serialization and parsing. For a human readable name, use the `Display` implementation,
    /// instead.
    ///
    /// # Examples
    ///
    /// ```
    /// use symbolic_common::Language;
    ///
    /// // Will print "objcpp"
    /// println!("{}", Language::ObjCpp.name());
    ///
    /// // Will print "Objective-C++"
    /// println!("{}", Language::ObjCpp);
    /// ```
    pub fn name(self) -> &'static str {
        match self {
            Language::Unknown => "unknown",
            Language::C => "c",
            Language::Cpp => "cpp",
            Language::D => "d",
            Language::Go => "go",
            Language::ObjC => "objc",
            Language::ObjCpp => "objcpp",
            Language::Rust => "rust",
            Language::Swift => "swift",
            Language::CSharp => "csharp",
            Language::VisualBasic => "visualbasic",
            Language::FSharp => "fsharp",
        }
    }
}

impl Default for Language {
    fn default() -> Language {
        Language::Unknown
    }
}

impl fmt::Display for Language {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let formatted = match *self {
            Language::Unknown => "unknown",
            Language::C => "C",
            Language::Cpp => "C++",
            Language::D => "D",
            Language::Go => "Go",
            Language::ObjC => "Objective-C",
            Language::ObjCpp => "Objective-C++",
            Language::Rust => "Rust",
            Language::Swift => "Swift",
            Language::CSharp => "C#",
            Language::VisualBasic => "Visual Basic",
            Language::FSharp => "F#",
        };

        write!(f, "{}", formatted)
    }
}

impl str::FromStr for Language {
    type Err = UnknownLanguageError;

    fn from_str(string: &str) -> Result<Language, UnknownLanguageError> {
        Ok(match string {
            "unknown" => Language::Unknown,
            "c" => Language::C,
            "cpp" => Language::Cpp,
            "d" => Language::D,
            "go" => Language::Go,
            "objc" => Language::ObjC,
            "objcpp" => Language::ObjCpp,
            "rust" => Language::Rust,
            "swift" => Language::Swift,
            "csharp" => Language::CSharp,
            "visualbasic" => Language::VisualBasic,
            "fsharp" => Language::FSharp,
            _ => return Err(UnknownLanguageError),
        })
    }
}

/// A [`Name`]s mangling state.
///
/// By default, the mangling of a [`Name`] is not known, but an explicit mangling state can be set
/// for Names that are guaranteed to be unmangled.
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_")
)]
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum NameMangling {
    /// The [`Name`] is definitely mangled.
    Mangled,
    /// The [`Name`] is not mangled.
    Unmangled,
    /// The mangling of the [`Name`] is not known.
    Unknown,
}

impl Default for NameMangling {
    fn default() -> Self {
        NameMangling::Unknown
    }
}

/// The name of a potentially mangled symbol.
///
/// Debugging information often only contains mangled names in their symbol and debug information
/// data. The mangling schema depends on the compiler and programming language. `Name` is a wrapper
/// type for potentially mangled names and an optionally declared language. To demangle the name,
/// see the `demangle` feature of `symbolic`.
///
/// Not all sources declare a programming language. In such a case, the [`language`] will be
/// `Unknown`. However, it may still be inferred for demangling by inspecting the mangled string.
///
/// Names can refer either functions, types, fields, or virtual constructs. Their semantics are
/// fully defined by the language and the compiler.
///
/// # Examples
///
/// Create a name and print it:
///
/// ```
/// use symbolic_common::Name;
///
/// let name = Name::from("_ZN3foo3barEv");
/// assert_eq!(name.to_string(), "_ZN3foo3barEv");
/// ```
///
/// Create a name with a language and explicit mangling state.
/// Alternate formatting prints the language:
///
/// ```
/// use symbolic_common::{Language, Name, NameMangling};
///
/// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
/// assert_eq!(format!("{:#}", name), "_ZN3foo3barEv [C++]");
/// ```
///
/// [`language`]: struct.Name.html#method.language
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(
    feature = "serde",
    derive(Serialize, Deserialize),
    serde(crate = "serde_")
)]
pub struct Name<'a> {
    string: Cow<'a, str>,
    lang: Language,
    #[cfg_attr(feature = "serde", serde(default))]
    mangling: NameMangling,
}

impl<'a> Name<'a> {
    /// Constructs a new Name with given mangling and language.
    ///
    /// In case both the mangling state and the language are unknown, a simpler alternative to use
    /// is [`Name::from`].
    ///
    ///
    /// # Example
    ///
    /// ```
    /// use symbolic_common::{Language, Name, NameMangling};
    ///
    /// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
    /// assert_eq!(format!("{:#}", name), "_ZN3foo3barEv [C++]");
    /// ```
    #[inline]
    pub fn new<S>(string: S, mangling: NameMangling, lang: Language) -> Self
    where
        S: Into<Cow<'a, str>>,
    {
        Name {
            string: string.into(),
            lang,
            mangling,
        }
    }

    /// Returns the raw, mangled string of the name.
    ///
    /// # Example
    ///
    /// ```
    /// use symbolic_common::{Language, Name, NameMangling};
    ///
    /// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
    /// assert_eq!(name.as_str(), "_ZN3foo3barEv");
    /// ```
    ///
    /// This is also available as an `AsRef<str>` implementation:
    ///
    /// ```
    /// use symbolic_common::{Language, Name, NameMangling};
    ///
    /// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
    /// assert_eq!(name.as_ref(), "_ZN3foo3barEv");
    /// ```
    pub fn as_str(&self) -> &str {
        &self.string
    }

    /// Set the `Name`'s language.
    pub fn set_language(&mut self, language: Language) -> &mut Self {
        self.lang = language;
        self
    }

    /// The language of the mangled symbol.
    ///
    /// If the language is not declared in the source, this returns `Language::Unknown`. The
    /// language may still be inferred using `detect_language`, which is declared on the `Demangle`
    /// extension trait.
    ///
    /// # Example
    ///
    /// ```
    /// use symbolic_common::{Language, Name, NameMangling};
    ///
    /// let name = Name::new("_ZN3foo3barEv", NameMangling::Mangled, Language::Cpp);
    /// assert_eq!(name.language(), Language::Cpp);
    /// ```
    pub fn language(&self) -> Language {
        self.lang
    }

    /// Set the `Name`'s mangling state.
    pub fn set_mangling(&mut self, mangling: NameMangling) -> &mut Self {
        self.mangling = mangling;
        self
    }

    /// Returns the `Name`'s mangling state.
    ///
    /// # Example
    ///
    /// ```
    /// use symbolic_common::{Language, Name, NameMangling};
    ///
    /// let unmangled = Name::new("foo::bar", NameMangling::Unmangled, Language::Unknown);
    /// assert_eq!(unmangled.mangling(), NameMangling::Unmangled);
    /// ```
    pub fn mangling(&self) -> NameMangling {
        self.mangling
    }

    /// Converts this name into a [`Cow`].
    ///
    /// # Example
    ///
    /// ```
    /// use symbolic_common::Name;
    ///
    /// let name = Name::from("_ZN3foo3barEv");
    /// assert_eq!(name.into_cow(), "_ZN3foo3barEv");
    /// ```
    pub fn into_cow(self) -> Cow<'a, str> {
        self.string
    }

    /// Converts this name into a [`String`].
    ///
    /// # Example
    ///
    /// ```
    /// use symbolic_common::Name;
    ///
    /// let name = Name::from("_ZN3foo3barEv");
    /// assert_eq!(name.into_string(), "_ZN3foo3barEv");
    /// ```
    pub fn into_string(self) -> String {
        self.string.into_owned()
    }
}

impl AsRef<str> for Name<'_> {
    fn as_ref(&self) -> &str {
        self.as_str()
    }
}

impl From<Name<'_>> for String {
    fn from(name: Name) -> Self {
        name.string.into()
    }
}

impl<'a, S> From<S> for Name<'a>
where
    S: Into<Cow<'a, str>>,
{
    fn from(string: S) -> Self {
        Self::new(string, NameMangling::Unknown, Language::Unknown)
    }
}

impl fmt::Display for Name<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.as_str())?;

        if f.alternate() && self.lang != Language::Unknown {
            write!(f, " [{}]", self.lang)?;
        }

        Ok(())
    }
}

macro_rules! impl_eq {
    ($lhs:ty, $rhs: ty) => {
        #[allow(clippy::extra_unused_lifetimes)]
        impl<'a, 'b> PartialEq<$rhs> for $lhs {
            #[inline]
            fn eq(&self, other: &$rhs) -> bool {
                PartialEq::eq(&self.string, other)
            }
        }

        #[allow(clippy::extra_unused_lifetimes)]
        impl<'a, 'b> PartialEq<$lhs> for $rhs {
            #[inline]
            fn eq(&self, other: &$lhs) -> bool {
                PartialEq::eq(self, &other.string)
            }
        }
    };
}

impl_eq! { Name<'a>, str }
impl_eq! { Name<'a>, &'b str }
impl_eq! { Name<'a>, String }
impl_eq! { Name<'a>, std::borrow::Cow<'b, str> }

#[cfg(feature = "serde")]
mod derive_serde {
    /// Helper macro to implement string based serialization and deserialization.
    ///
    /// If a type implements `FromStr` and `Display` then this automatically
    /// implements a serializer/deserializer for that type that dispatches
    /// appropriately.
    macro_rules! impl_str_serde {
        ($type:ty) => {
            impl ::serde_::ser::Serialize for $type {
                fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
                where
                    S: ::serde_::ser::Serializer,
                {
                    serializer.serialize_str(self.name())
                }
            }

            impl<'de> ::serde_::de::Deserialize<'de> for $type {
                fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
                where
                    D: ::serde_::de::Deserializer<'de>,
                {
                    <::std::borrow::Cow<str>>::deserialize(deserializer)?
                        .parse()
                        .map_err(::serde_::de::Error::custom)
                }
            }
        };
    }

    impl_str_serde!(super::Arch);
    impl_str_serde!(super::Language);
}