1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

use std::cmp;
use std::convert::TryInto;
use std::num::Wrapping;

use symphonia_core::audio::{AsAudioBufferRef, AudioBuffer, AudioBufferRef};
use symphonia_core::audio::{Signal, SignalSpec};
use symphonia_core::codecs::{
    CodecDescriptor, CodecParameters, VerificationCheck, CODEC_TYPE_FLAC,
};
use symphonia_core::codecs::{Decoder, DecoderOptions, FinalizeResult};
use symphonia_core::errors::{decode_error, unsupported_error, Result};
use symphonia_core::formats::Packet;
use symphonia_core::io::{BitReaderLtr, BufReader, ReadBitsLtr};
use symphonia_core::support_codec;
use symphonia_core::units::TimeBase;
use symphonia_core::util::bits::sign_extend_leq32_to_i32;
use symphonia_utils_xiph::flac::metadata::StreamInfo;

use log::{debug, log_enabled, warn};

use super::frame::*;
use super::validate::Validator;

fn decorrelate_left_side(left: &[i32], side: &mut [i32]) {
    for (s, l) in side.iter_mut().zip(left) {
        *s = *l - *s;
    }
}

fn decorrelate_mid_side(mid: &mut [i32], side: &mut [i32]) {
    for (m, s) in mid.iter_mut().zip(side) {
        // Mid (M) is given as M = L/2 + R/2, while Side (S) is given as S = L - R.
        //
        // To calculate the individual channels, the following equations can be used:
        //      - L = S/2 + M
        //      - R = M - S/2
        //
        // Ideally, this would work, but since samples are represented as integers, division yields
        // the floor of the divided value. Therefore, the channel restoration equations actually
        // yield:
        //      - L = floor(S/2) + M
        //      - R = M - floor(S/2)
        //
        // This will produce incorrect samples whenever the sample S is odd. For example:
        //      - 2/2 = 1
        //      - 3/2 = 1 (should be 2 if rounded!)
        //
        // To get the proper rounding behaviour, the solution is to add one to the result if S is
        // odd:
        //      - L = floor(S/2) + M + (S%2) = M + (S%2) + floor(S/2)
        //      - R = M - floor(S/2) + (S%2) = M + (S%2) - floor(S/2)
        //
        // Further, to prevent loss of accuracy, instead of dividing S/2 and adding or subtracting
        // it from M, multiply M*2, then add or subtract S, and then divide the whole result by 2.
        // This gives one extra bit of precision for the intermediate computations.
        //
        // Conveniently, since M should be doubled, the LSB will always be 0. This allows S%2 to
        // be added simply by bitwise ORing S&1 to M<<1.
        //
        // Therefore the final equations yield:
        //      - L = (2*M + (S%2) + S) / 2
        //      - R = (2*M + (S%2) - S) / 2
        let mid = (*m << 1) | (*s & 1);
        let side = *s;
        *m = (mid + side) >> 1;
        *s = (mid - side) >> 1;
    }
}

fn decorrelate_right_side(right: &[i32], side: &mut [i32]) {
    for (s, r) in side.iter_mut().zip(right) {
        *s += *r;
    }
}

/// Free Lossless Audio Codec (FLAC) decoder.
pub struct FlacDecoder {
    params: CodecParameters,
    is_validating: bool,
    validator: Validator,
    buf: AudioBuffer<i32>,
}

impl FlacDecoder {
    fn decode_inner(&mut self, packet: &Packet) -> Result<()> {
        let mut reader = packet.as_buf_reader();

        // Synchronize to a frame and get the synchronization code.
        let sync = sync_frame(&mut reader)?;

        let header = read_frame_header(&mut reader, sync)?;

        // Use the bits per sample and sample rate as stated in the frame header, falling back to
        // the stream information if provided. If neither are available, return an error.
        let bits_per_sample = if let Some(bps) = header.bits_per_sample {
            bps
        }
        else if let Some(bps) = self.params.bits_per_sample {
            bps
        }
        else {
            return decode_error("flac: bits per sample not provided");
        };

        // trace!("frame: [{:?}] strategy={:?}, n_samples={}, bps={}, channels={:?}",
        //     header.block_sequence,
        //     header.blocking_strategy,
        //     header.block_num_samples,
        //     bits_per_sample,
        //     &header.channel_assignment);

        // Reserve a writeable chunk in the buffer equal to the number of samples in the block.
        self.buf.clear();
        self.buf.render_reserved(Some(header.block_num_samples as usize));

        // Only Bitstream reading for subframes.
        {
            // Sub-frames don't have any byte-aligned content, so use a BitReader.
            let mut bs = BitReaderLtr::new(reader.read_buf_bytes_available_ref());

            // Read each subframe based on the channel assignment into a planar buffer.
            match header.channel_assignment {
                ChannelAssignment::Independant(channels) => {
                    for i in 0..channels as usize {
                        read_subframe(&mut bs, bits_per_sample, self.buf.chan_mut(i))?;
                    }
                }
                // For Left/Side, Mid/Side, and Right/Side channel configurations, the Side
                // (Difference) channel requires an extra bit per sample.
                ChannelAssignment::LeftSide => {
                    let (left, side) = self.buf.chan_pair_mut(0, 1);

                    read_subframe(&mut bs, bits_per_sample, left)?;
                    read_subframe(&mut bs, bits_per_sample + 1, side)?;

                    decorrelate_left_side(left, side);
                }
                ChannelAssignment::MidSide => {
                    let (mid, side) = self.buf.chan_pair_mut(0, 1);

                    read_subframe(&mut bs, bits_per_sample, mid)?;
                    read_subframe(&mut bs, bits_per_sample + 1, side)?;

                    decorrelate_mid_side(mid, side);
                }
                ChannelAssignment::RightSide => {
                    let (side, right) = self.buf.chan_pair_mut(0, 1);

                    read_subframe(&mut bs, bits_per_sample + 1, side)?;
                    read_subframe(&mut bs, bits_per_sample, right)?;

                    decorrelate_right_side(right, side);
                }
            }
        }

        // Feed the validator if validation is enabled.
        if self.is_validating {
            self.validator.update(&self.buf, bits_per_sample);
        }

        // The decoder uses a 32bit sample format as a common denominator, but that doesn't mean
        // the encoded audio samples are actually 32bit. Shift all samples in the output buffer
        // so that regardless the encoded bits/sample, the output is always 32bits/sample.
        if bits_per_sample < 32 {
            let shift = 32 - bits_per_sample;
            self.buf.transform(|sample| sample << shift);
        }

        Ok(())
    }
}

impl Decoder for FlacDecoder {
    fn try_new(params: &CodecParameters, options: &DecoderOptions) -> Result<Self> {
        // This decoder only supports FLAC.
        if params.codec != CODEC_TYPE_FLAC {
            return unsupported_error("flac: invalid codec type");
        }

        // Obtain the extra data.
        let extra_data = match params.extra_data.as_ref() {
            Some(buf) => buf,
            _ => return unsupported_error("flac: missing extra data"),
        };

        // Read the stream information block.
        let info = StreamInfo::read(&mut BufReader::new(extra_data))?;

        // Clone the codec parameters so that the parameters can be supplemented and/or amended.
        let mut params = params.clone();

        // Amend the provided codec parameters with information from the stream information block.
        params
            .with_sample_rate(info.sample_rate)
            .with_time_base(TimeBase::new(1, info.sample_rate))
            .with_bits_per_sample(info.bits_per_sample)
            .with_max_frames_per_packet(u64::from(info.block_len_max))
            .with_channels(info.channels);

        if let Some(md5) = info.md5 {
            params.with_verification_code(VerificationCheck::Md5(md5));
        }

        if let Some(n_frames) = info.n_samples {
            params.with_n_frames(n_frames);
        }

        let spec = SignalSpec::new(info.sample_rate, info.channels);
        let buf = AudioBuffer::new(u64::from(info.block_len_max), spec);

        // TODO: Verify packet integrity if the demuxer is not.
        // if !params.packet_data_integrity {
        //     return unsupported_error("flac: packet integrity is required");
        // }

        Ok(FlacDecoder {
            params,
            is_validating: options.verify,
            validator: Default::default(),
            buf,
        })
    }

    fn supported_codecs() -> &'static [CodecDescriptor] {
        &[support_codec!(CODEC_TYPE_FLAC, "flac", "Free Lossless Audio Codec")]
    }

    fn reset(&mut self) {
        // No state is stored between packets, therefore do nothing.
    }

    fn codec_params(&self) -> &CodecParameters {
        &self.params
    }

    fn decode(&mut self, packet: &Packet) -> Result<AudioBufferRef<'_>> {
        if let Err(e) = self.decode_inner(packet) {
            self.buf.clear();
            Err(e)
        }
        else {
            Ok(self.buf.as_audio_buffer_ref())
        }
    }

    fn finalize(&mut self) -> FinalizeResult {
        let mut result: FinalizeResult = Default::default();

        // If verifying...
        if self.is_validating {
            // Try to get the expected MD5 checksum and compare it against the decoded checksum.
            if let Some(VerificationCheck::Md5(expected)) = self.params.verification_check {
                let decoded = self.validator.md5();

                // Only generate the expected and decoded MD5 checksum strings if logging is
                // enabled at the debug level.
                if log_enabled!(log::Level::Debug) {
                    use std::fmt::Write;

                    let mut expected_s = String::with_capacity(32);
                    let mut decoded_s = String::with_capacity(32);

                    expected.iter().for_each(|b| write!(expected_s, "{:02x}", b).unwrap());
                    decoded.iter().for_each(|b| write!(decoded_s, "{:02x}", b).unwrap());

                    debug!("verification: expected md5 = {}", expected_s);
                    debug!("verification: decoded md5  = {}", decoded_s);
                }

                result.verify_ok = Some(decoded == expected)
            }
            else {
                warn!("verification requested but the expected md5 checksum was not provided");
            }
        }

        result
    }

    fn last_decoded(&self) -> AudioBufferRef<'_> {
        self.buf.as_audio_buffer_ref()
    }
}

// Subframe business

#[derive(Debug)]
enum SubFrameType {
    Constant,
    Verbatim,
    FixedLinear(u32),
    Linear(u32),
}

fn read_subframe<B: ReadBitsLtr>(bs: &mut B, frame_bps: u32, buf: &mut [i32]) -> Result<()> {
    // First sub-frame bit must always 0.
    if bs.read_bool()? {
        return decode_error("flac: subframe padding is not 0");
    }

    // Next 6 bits designate the sub-frame type.
    let subframe_type_enc = bs.read_bits_leq32(6)?;

    let subframe_type = match subframe_type_enc {
        0x00 => SubFrameType::Constant,
        0x01 => SubFrameType::Verbatim,
        0x08..=0x0f => {
            let order = subframe_type_enc & 0x07;
            // The Fixed Predictor only supports orders between 0 and 4.
            if order > 4 {
                return decode_error("flac: fixed predictor orders of greater than 4 are invalid");
            }
            SubFrameType::FixedLinear(order)
        }
        0x20..=0x3f => SubFrameType::Linear((subframe_type_enc & 0x1f) + 1),
        _ => {
            return decode_error("flac: subframe type set to reserved value");
        }
    };

    // Bit 7 of the sub-frame header designates if there are any dropped (wasted in FLAC terms)
    // bits per sample in the audio sub-block. If the bit is set, unary decode the number of
    // dropped bits per sample.
    let dropped_bps = if bs.read_bool()? { bs.read_unary_zeros()? + 1 } else { 0 };

    // The bits per sample stated in the frame header is for the decoded audio sub-block samples.
    // However, it is likely that the lower order bits of all the samples are simply 0. Therefore,
    // the encoder will truncate `dropped_bps` of lower order bits for every sample in a sub-block.
    // The decoder simply needs to shift left all samples by `dropped_bps` after decoding the
    // sub-frame and obtaining the truncated audio sub-block samples.
    let bps = frame_bps - dropped_bps;

    // trace!("\tsubframe: type={:?}, bps={}, dropped_bps={}",
    //     &subframe_type,
    //     bps,
    //     dropped_bps);

    match subframe_type {
        SubFrameType::Constant => decode_constant(bs, bps, buf)?,
        SubFrameType::Verbatim => decode_verbatim(bs, bps, buf)?,
        SubFrameType::FixedLinear(order) => decode_fixed_linear(bs, bps, order, buf)?,
        SubFrameType::Linear(order) => decode_linear(bs, bps, order, buf)?,
    };

    // Shift the samples to account for the dropped bits.
    samples_shl(dropped_bps, buf);

    Ok(())
}

#[inline(always)]
fn samples_shl(shift: u32, buf: &mut [i32]) {
    if shift > 0 {
        for sample in buf.iter_mut() {
            *sample = sample.wrapping_shl(shift);
        }
    }
}

fn decode_constant<B: ReadBitsLtr>(bs: &mut B, bps: u32, buf: &mut [i32]) -> Result<()> {
    let const_sample = sign_extend_leq32_to_i32(bs.read_bits_leq32(bps)?, bps);

    for sample in buf.iter_mut() {
        *sample = const_sample;
    }

    Ok(())
}

fn decode_verbatim<B: ReadBitsLtr>(bs: &mut B, bps: u32, buf: &mut [i32]) -> Result<()> {
    for sample in buf.iter_mut() {
        *sample = sign_extend_leq32_to_i32(bs.read_bits_leq32(bps)?, bps);
    }

    Ok(())
}

fn decode_fixed_linear<B: ReadBitsLtr>(
    bs: &mut B,
    bps: u32,
    order: u32,
    buf: &mut [i32],
) -> Result<()> {
    // The first `order` samples are encoded verbatim to warm-up the LPC decoder.
    decode_verbatim(bs, bps, &mut buf[..order as usize])?;

    // Decode the residuals for the predicted samples.
    decode_residual(bs, order, buf)?;

    // Run the Fixed predictor (appends to residuals).
    //
    // TODO: The fixed predictor uses 64-bit accumulators by default to support bps > 26. On 64-bit
    // machines, this is preferable, but on 32-bit machines if bps <= 26, run a 32-bit predictor,
    // and fallback to the 64-bit predictor if necessary (which is basically never).
    fixed_predict(order, buf);

    Ok(())
}

fn decode_linear<B: ReadBitsLtr>(bs: &mut B, bps: u32, order: u32, buf: &mut [i32]) -> Result<()> {
    // The order of the Linear Predictor should be between 1 and 32.
    debug_assert!(order > 0 && order <= 32);

    // The first `order` samples are encoded verbatim to warm-up the LPC decoder.
    decode_verbatim(bs, bps, &mut buf[0..order as usize])?;

    // Quantized linear predictor (QLP) coefficients precision in bits (1-16).
    let qlp_precision = bs.read_bits_leq32(4)? + 1;

    if qlp_precision > 15 {
        return decode_error("flac: qlp precision set to reserved value");
    }

    // QLP coefficients bit shift [-16, 15].
    let qlp_coeff_shift = sign_extend_leq32_to_i32(bs.read_bits_leq32(5)?, 5);

    if qlp_coeff_shift >= 0 {
        let mut qlp_coeffs = [0i32; 32];

        for c in qlp_coeffs.iter_mut().rev().take(order as usize) {
            *c = sign_extend_leq32_to_i32(bs.read_bits_leq32(qlp_precision)?, qlp_precision);
        }

        decode_residual(bs, order, buf)?;

        // Helper function to dispatch to a predictor with a maximum order of N.
        #[inline(always)]
        fn lpc<const N: usize>(order: u32, coeffs: &[i32; 32], coeff_shift: i32, buf: &mut [i32]) {
            let coeffs_n = (&coeffs[32 - N..32]).try_into().unwrap();
            lpc_predict::<N>(order as usize, coeffs_n, coeff_shift as u32, buf);
        }

        // Pick the best length linear predictor to use based on the order. Most FLAC streams use
        // the subset format and have an order <= 12. Therefore, for orders <= 12, dispatch to
        // predictors that roughly match the order. If a predictor is too long for a given order,
        // then there will be wasted computations. On the other hand, it is not worth the code bloat
        // to specialize for every order <= 12.
        match order {
            0..=4 => lpc::<4>(order, &qlp_coeffs, qlp_coeff_shift, buf),
            5..=6 => lpc::<6>(order, &qlp_coeffs, qlp_coeff_shift, buf),
            7..=8 => lpc::<8>(order, &qlp_coeffs, qlp_coeff_shift, buf),
            9..=10 => lpc::<10>(order, &qlp_coeffs, qlp_coeff_shift, buf),
            11..=12 => lpc::<12>(order, &qlp_coeffs, qlp_coeff_shift, buf),
            _ => lpc::<32>(order, &qlp_coeffs, qlp_coeff_shift, buf),
        };
    }
    else {
        return unsupported_error("flac: lpc shifts less than 0 are not supported");
    }

    Ok(())
}

fn decode_residual<B: ReadBitsLtr>(
    bs: &mut B,
    n_prelude_samples: u32,
    buf: &mut [i32],
) -> Result<()> {
    let method_enc = bs.read_bits_leq32(2)?;

    // The FLAC specification defines two residual coding methods: Rice and Rice2. The
    // only difference between the two is the bit width of the Rice parameter. Note the
    // bit width based on the residual encoding method and use the same code path for
    // both cases.
    let param_bit_width = match method_enc {
        0x0 => 4,
        0x1 => 5,
        _ => {
            return decode_error("flac: residual method set to reserved value");
        }
    };

    // Read the partition order.
    let order = bs.read_bits_leq32(4)?;

    // The number of partitions is equal to 2^order.
    let n_partitions = 1usize << order;

    // In general, all partitions have the same number of samples such that the sum of all partition
    // lengths equal the block length. The number of samples in a partition can therefore be
    // calculated with block_size / 2^order *in general*. However, since there are warm-up samples
    // stored verbatim, the first partition has n_prelude_samples less samples. Likewise, if there
    // is only one partition, then it too has n_prelude_samples less samples.
    let n_partition_samples = buf.len() >> order;

    // The size of the first (and/or only) partition as per the specification is n_partition_samples
    // minus the number of warm-up samples (which is the predictor order). Ensure the number of
    // samples in these types of partitions cannot be negative.
    if n_prelude_samples as usize > n_partition_samples {
        return decode_error("flac: residual partition too small for given predictor order");
    }

    // Ensure that the sum of all partition lengths equal the block size.
    if n_partitions * n_partition_samples != buf.len() {
        return decode_error("flac: block size is not same as encoded residual");
    }

    // trace!("\t\tresidual: n_partitions={}, n_partition_samples={}, n_prelude_samples={}",
    //     n_partitions,
    //     n_partition_samples,
    //     n_prelude_samples);

    // Decode the first partition as it may have less than n_partition_samples samples.
    decode_rice_partition(
        bs,
        param_bit_width,
        &mut buf[n_prelude_samples as usize..n_partition_samples],
    )?;

    // Decode the remaining partitions.
    for buf_chunk in buf[n_partition_samples..].chunks_mut(n_partition_samples) {
        decode_rice_partition(bs, param_bit_width, buf_chunk)?;
    }

    Ok(())
}

fn decode_rice_partition<B: ReadBitsLtr>(
    bs: &mut B,
    param_bit_width: u32,
    buf: &mut [i32],
) -> Result<()> {
    // Read the encoding parameter, generally the Rice parameter.
    let rice_param = bs.read_bits_leq32(param_bit_width)?;

    // If the Rice parameter is all 1s (e.g., 0xf for a 4bit parameter, 0x1f for a 5bit parameter),
    // then it indicates that residuals in this partition are not Rice encoded, rather they are
    // binary encoded. Conversely, if the parameter is less than this value, the residuals are Rice
    // encoded.
    if rice_param < (1 << param_bit_width) - 1 {
        // println!("\t\t\tPartition (Rice): n_residuals={}, rice_param={}", buf.len(), rice_param);

        // Read each rice encoded residual and store in buffer.
        for sample in buf.iter_mut() {
            let q = bs.read_unary_zeros()?;
            let r = bs.read_bits_leq32(rice_param)?;
            *sample = rice_signed_to_i32((q << rice_param) | r);
        }
    }
    else {
        let residual_bits = bs.read_bits_leq32(5)?;

        // trace!(
        //     "\t\t\tpartition (Binary): n_residuals={}, residual_bits={}",
        //     buf.len(),
        //     residual_bits
        // );

        // Read each binary encoded residual and store in buffer.
        for sample in buf.iter_mut() {
            *sample = sign_extend_leq32_to_i32(bs.read_bits_leq32(residual_bits)?, residual_bits);
        }
    }

    Ok(())
}

#[inline(always)]
fn rice_signed_to_i32(word: u32) -> i32 {
    // Input  => 0  1  2  3  4  5  6  7  8  9  10
    // Output => 0 -1  1 -2  2 -3  3 -4  4 -5   5
    //
    //  - If even: output = input / 2
    //  - If odd:  output = -(input + 1) / 2
    //                    =  (input / 2) - 1

    // Divide the input by 2 and convert to signed.
    let div2 = (word >> 1) as i32;

    // Using the LSB of the input, create a new signed integer that's either
    // -1 (0b1111_11110) or 0 (0b0000_0000). For odd inputs, this will be -1, for even
    // inputs it'll be 0.
    let sign = -((word & 0x1) as i32);

    // XOR the div2 result with the sign. If sign is 0, the XOR produces div2. If sign is -1, then
    // -div2 - 1 is returned.
    //
    // Example:  input = 9 => div2 = 0b0000_0100, sign = 0b1111_11110
    //
    //           div2 ^ sign =   0b0000_0100
    //                         ^ 0b1111_1110
    //                           -----------
    //                           0b1111_1011  (-5)
    div2 ^ sign
}

#[test]
fn verify_rice_signed_to_i32() {
    assert_eq!(rice_signed_to_i32(0), 0);
    assert_eq!(rice_signed_to_i32(1), -1);
    assert_eq!(rice_signed_to_i32(2), 1);
    assert_eq!(rice_signed_to_i32(3), -2);
    assert_eq!(rice_signed_to_i32(4), 2);
    assert_eq!(rice_signed_to_i32(5), -3);
    assert_eq!(rice_signed_to_i32(6), 3);
    assert_eq!(rice_signed_to_i32(7), -4);
    assert_eq!(rice_signed_to_i32(8), 4);
    assert_eq!(rice_signed_to_i32(9), -5);
    assert_eq!(rice_signed_to_i32(10), 5);

    assert_eq!(rice_signed_to_i32(u32::max_value()), -2_147_483_648);
}

fn fixed_predict(order: u32, buf: &mut [i32]) {
    debug_assert!(order <= 4);

    // The Fixed Predictor is just a hard-coded version of the Linear Predictor up to order 4 and
    // with fixed coefficients. Some cases may be simplified such as orders 0 and 1. For orders 2
    // through 4, use the same IIR-style algorithm as the Linear Predictor.
    match order {
        // A 0th order predictor always predicts 0, and therefore adds nothing to any of the samples
        // in buf. Do nothing.
        0 => (),
        // A 1st order predictor always returns the previous sample since the polynomial is:
        // s(i) = 1*s(i),
        1 => {
            for i in 1..buf.len() {
                buf[i] += buf[i - 1];
            }
        }
        // A 2nd order predictor uses the polynomial: s(i) = 2*s(i-1) - 1*s(i-2).
        2 => {
            for i in 2..buf.len() {
                let a = Wrapping(-1) * Wrapping(i64::from(buf[i - 2]));
                let b = Wrapping(2) * Wrapping(i64::from(buf[i - 1]));
                buf[i] += (a + b).0 as i32;
            }
        }
        // A 3rd order predictor uses the polynomial: s(i) = 3*s(i-1) - 3*s(i-2) + 1*s(i-3).
        3 => {
            for i in 3..buf.len() {
                let a = Wrapping(1) * Wrapping(i64::from(buf[i - 3]));
                let b = Wrapping(-3) * Wrapping(i64::from(buf[i - 2]));
                let c = Wrapping(3) * Wrapping(i64::from(buf[i - 1]));
                buf[i] += (a + b + c).0 as i32;
            }
        }
        // A 4th order predictor uses the polynomial:
        // s(i) = 4*s(i-1) - 6*s(i-2) + 4*s(i-3) - 1*s(i-4).
        4 => {
            for i in 4..buf.len() {
                let a = Wrapping(-1) * Wrapping(i64::from(buf[i - 4]));
                let b = Wrapping(4) * Wrapping(i64::from(buf[i - 3]));
                let c = Wrapping(-6) * Wrapping(i64::from(buf[i - 2]));
                let d = Wrapping(4) * Wrapping(i64::from(buf[i - 1]));
                buf[i] += (a + b + c + d).0 as i32;
            }
        }
        _ => unreachable!(),
    };
}

/// Generalized Linear Predictive Coding (LPC) decoder. The exact number of coefficients given is
/// specified by `order`. Coefficients must be stored in reverse order in `coeffs` with the first
/// coefficient at index 31. Coefficients at indices less than 31 - `order` must be 0.
/// It is expected that the first `order` samples in `buf` are warm-up samples.
fn lpc_predict<const N: usize>(order: usize, coeffs: &[i32; N], coeff_shift: u32, buf: &mut [i32]) {
    // Order must be less than or equal to the number of coefficients.
    debug_assert!(order <= coeffs.len());

    // Order must be less than to equal to the number of samples the buffer can hold.
    debug_assert!(order <= buf.len());

    // The main, efficient, predictor loop needs N previous samples to run. Since order <= N,
    // calculate enough samples to reach N.
    let n_prefill = cmp::min(N, buf.len()) - order;

    for i in order..order + n_prefill {
        let predicted = coeffs[N - order..N]
            .iter()
            .zip(&buf[i - order..i])
            .map(|(&c, &sample)| c as i64 * sample as i64)
            .sum::<i64>();

        buf[i] += (predicted >> coeff_shift) as i32;
    }

    // If the pre-fill operation filled the entire sample buffer, return immediately.
    if buf.len() <= N {
        return;
    }

    // Main predictor loop. Calculate each sample by applying what is essentially an IIR filter.
    for i in N..buf.len() {
        let predicted = coeffs
            .iter()
            .zip(&buf[i - N..i])
            .map(|(&c, &s)| i64::from(c) * i64::from(s))
            .sum::<i64>();

        buf[i] += (predicted >> coeff_shift) as i32;
    }
}