1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
#![warn(rust_2018_idioms)]
#![forbid(unsafe_code)]
// The following lints are allowed in all Symphonia crates. Please see clippy.toml for their
// justification.
#![allow(clippy::comparison_chain)]
#![allow(clippy::excessive_precision)]
#![allow(clippy::identity_op)]
#![allow(clippy::manual_range_contains)]
// Disable to better express the specification.
#![allow(clippy::collapsible_else_if)]
use std::cmp::min;
use symphonia_core::audio::{
AsAudioBufferRef, AudioBuffer, AudioBufferRef, Channels, Signal, SignalSpec,
};
use symphonia_core::codecs::{
CodecDescriptor, CodecParameters, Decoder, DecoderOptions, FinalizeResult, CODEC_TYPE_ALAC,
};
use symphonia_core::errors::{decode_error, unsupported_error, Result};
use symphonia_core::formats::Packet;
use symphonia_core::io::{BitReaderLtr, BufReader, FiniteStream, ReadBitsLtr, ReadBytes};
use symphonia_core::support_codec;
/// Supported ALAC version.
const ALAC_VERSION: u8 = 0;
/// Single Channel Element (SCE) tag.
const ALAC_ELEM_TAG_SCE: u32 = 0;
/// Channel Pair Element (CPE) tag.
const ALAC_ELEM_TAG_CPE: u32 = 1;
/// Coupling Channel Element CCE tag.
const ALAC_ELEM_TAG_CCE: u32 = 2;
/// LFE Channel Element (LFE) tag.
const ALAC_ELEM_TAG_LFE: u32 = 3;
/// Data Stream Element (DSE) tag.
const ALAC_ELEM_TAG_DSE: u32 = 4;
/// Program Control Element (PCE) tag.
const ALAC_ELEM_TAG_PCE: u32 = 5;
/// Fill Element (FIL) tag.
const ALAC_ELEM_TAG_FIL: u32 = 6;
/// Frame End Element (END) tag.
const ALAC_ELEM_TAG_END: u32 = 7;
/// An ALAC channel layout.
#[derive(Debug)]
enum ChannelLayout {
/// Centre
Mono,
/// Front Left, Front Right
Stereo,
/// Centre, Front Left, Front Right
Mpeg3p0B,
/// Centre, Front Left, Front Right, Rear Centre
Mpeg4p0B,
/// Centre, Front Left, Front Right, Side Left, Side Right
Mpeg5p0D,
/// Centre, Front Left, Front Right, Side Left, Side Right, LFE
Mpeg5p1D,
/// Centre, Front Left, Front Right, Side Left, Side Right, Rear Centre, LFE
Aac6p1,
/// Centre, Front Left of Centre, Front Right of Centre, Front Left, Front Right, Side Left,
/// Side Right, LFE
Mpeg7p1B,
}
impl ChannelLayout {
/// Given the current ALAC channel layout, this function will return a mappings of an ALAC
/// channel number (the index into the array) to a Symphonia `AudioBuffer` channel index.
fn channel_map(&self) -> [u8; 8] {
match self {
ChannelLayout::Mono => [0, 0, 0, 0, 0, 0, 0, 0],
ChannelLayout::Stereo => [0, 1, 0, 0, 0, 0, 0, 0],
ChannelLayout::Mpeg3p0B => [2, 0, 1, 0, 0, 0, 0, 0],
ChannelLayout::Mpeg4p0B => [2, 0, 1, 3, 0, 0, 0, 0],
ChannelLayout::Mpeg5p0D => [2, 0, 1, 3, 4, 0, 0, 0],
ChannelLayout::Mpeg5p1D => [2, 0, 1, 4, 5, 3, 0, 0],
ChannelLayout::Aac6p1 => [2, 0, 1, 5, 6, 4, 3, 0],
ChannelLayout::Mpeg7p1B => [2, 4, 5, 0, 1, 6, 7, 3],
}
}
/// Get a Symphonia channels bitmask from the ALAC channel layout.
fn channels(&self) -> Channels {
match self {
ChannelLayout::Mono => Channels::FRONT_LEFT,
ChannelLayout::Stereo => Channels::FRONT_LEFT | Channels::FRONT_RIGHT,
ChannelLayout::Mpeg3p0B => {
Channels::FRONT_CENTRE | Channels::FRONT_LEFT | Channels::FRONT_RIGHT
}
ChannelLayout::Mpeg4p0B => {
Channels::FRONT_CENTRE
| Channels::FRONT_LEFT
| Channels::FRONT_RIGHT
| Channels::REAR_CENTRE
}
ChannelLayout::Mpeg5p0D => {
Channels::FRONT_CENTRE
| Channels::FRONT_LEFT
| Channels::FRONT_RIGHT
| Channels::SIDE_LEFT
| Channels::SIDE_RIGHT
}
ChannelLayout::Mpeg5p1D => {
Channels::FRONT_CENTRE
| Channels::FRONT_LEFT
| Channels::FRONT_RIGHT
| Channels::SIDE_LEFT
| Channels::SIDE_RIGHT
| Channels::LFE1
}
ChannelLayout::Aac6p1 => {
Channels::FRONT_CENTRE
| Channels::FRONT_LEFT
| Channels::FRONT_RIGHT
| Channels::SIDE_LEFT
| Channels::SIDE_RIGHT
| Channels::REAR_CENTRE
| Channels::LFE1
}
ChannelLayout::Mpeg7p1B => {
Channels::FRONT_CENTRE
| Channels::FRONT_LEFT_CENTRE
| Channels::FRONT_RIGHT_CENTRE
| Channels::FRONT_LEFT
| Channels::FRONT_RIGHT
| Channels::SIDE_LEFT
| Channels::SIDE_RIGHT
| Channels::LFE1
}
}
}
}
/// The ALAC "magic cookie" or codec specific configuration.
#[derive(Debug)]
#[allow(dead_code)]
struct MagicCookie {
frame_length: u32,
compatible_version: u8,
bit_depth: u8,
pb: u8,
mb: u8,
kb: u8,
num_channels: u8,
max_run: u16,
max_frame_bytes: u32,
avg_bit_rate: u32,
sample_rate: u32,
channel_layout: ChannelLayout,
}
impl MagicCookie {
fn try_read<B: ReadBytes + FiniteStream>(reader: &mut B) -> Result<MagicCookie> {
// The magic cookie is either 24 or 48 bytes long.
if reader.byte_len() != 24 && reader.byte_len() != 48 {
return unsupported_error("alac: invalid magic cookie size");
}
let mut config = MagicCookie {
frame_length: reader.read_be_u32()?,
compatible_version: reader.read_u8()?,
bit_depth: reader.read_u8()?,
pb: reader.read_u8()?,
mb: reader.read_u8()?,
kb: reader.read_u8()?,
num_channels: reader.read_u8()?,
max_run: reader.read_be_u16()?,
max_frame_bytes: reader.read_be_u32()?,
avg_bit_rate: reader.read_be_u32()?,
sample_rate: reader.read_be_u32()?,
channel_layout: ChannelLayout::Mono,
};
// Only support up-to the currently implemented ALAC version.
if config.compatible_version > ALAC_VERSION {
return unsupported_error("alac: not compatible with alac version 0");
}
// A bit-depth greater than 32 is not allowed.
if config.bit_depth > 32 {
return decode_error("alac: invalid bit depth");
}
// Only 8 channel layouts exist.
// TODO: Support discrete/auxiliary channels.
if config.num_channels < 1 || config.num_channels > 8 {
return unsupported_error("alac: more than 8 channels");
}
// If the magic cookie is 48 bytes, the channel layout is explictly set, otherwise select a
// channel layout from the number of channels.
config.channel_layout = if reader.byte_len() == 48 {
// The first field is the size of the channel layout info. This should always be 24.
if reader.read_be_u32()? != 24 {
return decode_error("alac: invalid channel layout info size");
}
// The channel layout info identifier should be the ascii string "chan".
if reader.read_quad_bytes()? != *b"chan" {
return decode_error("alac: invalid channel layout info id");
}
// The channel layout info version must be 0.
if reader.read_be_u32()? != 0 {
return decode_error("alac: invalid channel layout info version");
}
// Read the channel layout tag. The numerical value of this tag is defined by the Apple
// CoreAudio API.
let layout = match reader.read_be_u32()? {
// 100 << 16
0x64_0001 => ChannelLayout::Mono,
// 101 << 16
0x65_0002 => ChannelLayout::Stereo,
// 113 << 16
0x71_0003 => ChannelLayout::Mpeg3p0B,
// 116 << 16
0x74_0004 => ChannelLayout::Mpeg4p0B,
// 120 << 16
0x78_0005 => ChannelLayout::Mpeg5p0D,
// 124 << 16
0x7c_0006 => ChannelLayout::Mpeg5p1D,
// 142 << 16
0x8e_0007 => ChannelLayout::Aac6p1,
// 127 << 16
0x7f_0008 => ChannelLayout::Mpeg7p1B,
_ => return decode_error("alac: invalid channel layout tag"),
};
// The number of channels stated in the mandatory part of the magic cookie should match
// the number of channels implicit to the channel layout.
if config.num_channels != layout.channels().count() as u8 {
return decode_error(
"alac: the number of channels differs from the channel layout",
);
}
// The next two fields are reserved and should be 0.
if reader.read_be_u32()? != 0 || reader.read_be_u32()? != 0 {
return decode_error("alac: reserved values in channel layout info are not 0");
}
layout
}
else {
// If extra channel information is not provided, use the number of channels to assign
// a channel layout.
//
// TODO: If the number of channels is > 2, then the additional channels are considered
// discrete and not part of a channel layout. However, Symphonia does not support
// discrete/auxiliary channels so the standard ALAC channel layouts are used for now.
match config.num_channels {
1 => ChannelLayout::Mono,
2 => ChannelLayout::Stereo,
3 => ChannelLayout::Mpeg3p0B,
4 => ChannelLayout::Mpeg4p0B,
5 => ChannelLayout::Mpeg5p0D,
6 => ChannelLayout::Mpeg5p1D,
7 => ChannelLayout::Aac6p1,
8 => ChannelLayout::Mpeg7p1B,
_ => return decode_error("alac: unknown channel layout for number of channels"),
}
};
Ok(config)
}
}
#[derive(Debug)]
struct ElementChannel {
pred_bits: u32,
kb: u32,
mb: u32,
mode: u32,
shift: u32,
pb_factor: u32,
lpc_order: u32,
lpc_coeffs: [i32; 32],
}
impl ElementChannel {
fn try_read<B: ReadBitsLtr>(
bs: &mut B,
config: &MagicCookie,
pred_bits: u8,
) -> Result<ElementChannel> {
let mode = bs.read_bits_leq32(4)?;
let shift = bs.read_bits_leq32(4)?;
let pb_factor = (bs.read_bits_leq32(3)? * u32::from(config.pb)) >> 2;
let lpc_order = bs.read_bits_leq32(5)?;
// Read the predictor coefficients.
let mut lpc_coeffs = [0; 32];
for coeff in &mut lpc_coeffs[..lpc_order as usize] {
*coeff = bs.read_bits_leq32_signed(16)?;
}
Ok(ElementChannel {
pred_bits: u32::from(pred_bits),
kb: u32::from(config.kb),
mb: u32::from(config.mb),
mode,
shift,
pb_factor,
lpc_order,
lpc_coeffs,
})
}
fn read_residuals<B: ReadBitsLtr>(&mut self, bs: &mut B, out: &mut [i32]) -> Result<()> {
let out_len = out.len();
let mut mb = self.mb;
let mut sign_toggle = 0;
let mut zero_run_end = 0;
for (i, sample) in out.iter_mut().enumerate() {
// If the current sample is within a run of zeros, skip to the next sample since the
// output is already zeroed.
if i < zero_run_end {
continue;
}
let k = lg3a(mb);
let val = read_rice_code(bs, k.min(self.kb), self.pred_bits)? + sign_toggle;
*sample = rice_code_to_signed(val);
if val > 0xffff {
mb = 0xffff;
}
else {
// Order is important here.
mb -= (self.pb_factor * mb) >> 9;
mb += self.pb_factor * val;
}
sign_toggle = 0;
// In this special case, a run of zeros is signalled.
if mb < 128 && i + 1 < out_len {
// This subtraction cannot overflow because mb is a u32 and < 128. Therefore, mb
// will always have 25 leading zeros.
let k = mb.leading_zeros() - 24 + ((mb + 16) >> 6);
// The decoded rice code indicates the length of the run of zeros.
let zeros = read_rice_code(bs, k.min(self.kb), 16)?;
if zeros < 0xffff {
sign_toggle = 1;
}
mb = 0;
zero_run_end = i + 1 + zeros as usize;
}
}
Ok(())
}
fn predict(&mut self, out: &mut [i32]) -> Result<()> {
// Modes other than 0 and 15 are invalid.
if self.mode > 0 && self.mode < 15 {
return decode_error("alac: invalid mode");
}
// An order of 0 indicates no prediction is done (the residuals are the samples).
if self.lpc_order == 0 {
return Ok(());
}
// Decoding is performed on signed 32-bit numbers, however, the actual predicted samples
// have a bit-width of `pred_bits`. Therefore, the top `32 - pred_bits` bits should be
// clipped.
let num_clip_bits = 32 - self.pred_bits;
// An order of 31, or a mode of 15, are special cases where the predictor runs twice. The
// first-pass uses a first-order prediction. The second pass is then the regular prediction
// using the coefficients from the bitstream.
if self.lpc_order == 31 || self.mode == 15 {
for i in 1..out.len() {
out[i] = clip_msbs(out[i].wrapping_add(out[i - 1]), num_clip_bits);
}
}
let order = self.lpc_order as usize;
// Process warm-up samples.
for i in 1..1 + order {
out[i] = clip_msbs(out[i].wrapping_add(out[i - 1]), num_clip_bits);
}
// Do the prediction.
//
// TODO: Orders for 4 and 8 are special-cased in the reference decoder. Consider using
// optimized versions for those cases like the FLAC decoder does.
for i in 1 + order..out.len() {
// Value of the output sample before prediction (the residual or difference).
let mut res = out[i];
// Value of the sample preceeding the first past sample.
let past0 = out[i - order - 1];
// Run the FIR filter.
let sum = self.lpc_coeffs[..order]
.iter()
.rev()
.zip(&out[i - order..i])
.map(|(&coeff, &s)| coeff.wrapping_mul(s - past0))
.fold(0i32, |sum, s| sum.wrapping_add(s));
// Rewrite `1 << (self.shift - 1)` as `(1 << self.shift) >> 1` to prevent overflowing
// when shift is 0.
let val = (sum + ((1 << self.shift) >> 1)) >> self.shift;
out[i] = clip_msbs(out[i].wrapping_add(past0).wrapping_add(val), num_clip_bits);
// Adjust the coefficients if the initial value of the residual was not 0.
if res != 0 {
let iter =
self.lpc_coeffs[..order].iter_mut().rev().zip(&out[i - order..i]).enumerate();
// Note the subtle change in operations and signs for the following two cases.
if res > 0 {
// Positive residual case.
for (j, (coeff, &sample)) in iter {
let val = past0 - sample;
let sign = val.signum();
*coeff -= sign;
res -= (1 + j as i32) * ((sign * val) >> self.shift);
if res <= 0 {
break;
}
}
}
else {
// Negative residual case.
for (j, (coeff, &sample)) in iter {
let val = past0 - sample;
let sign = val.signum();
*coeff += sign;
res -= (1 + j as i32) * ((-sign * val) >> self.shift);
if res >= 0 {
break;
}
}
}
}
}
Ok(())
}
}
/// Apple Lossless Audio Codec (ALAC) decoder.
pub struct AlacDecoder {
/// Codec paramters.
params: CodecParameters,
/// A temporary buffer to store the tail bits while decoding an element with a bit-shift > 0. If
/// `config.num_channels` > 1, then this buffer must be 2x the frame length.
tail_bits: Vec<u16>,
/// ALAC codec-specific configuration.
config: MagicCookie,
/// Output buffer.
buf: AudioBuffer<i32>,
}
impl AlacDecoder {
fn decode_inner(&mut self, packet: &Packet) -> Result<()> {
let mut bs = BitReaderLtr::new(packet.buf());
let channel_map = self.config.channel_layout.channel_map();
let num_channels = self.config.num_channels as usize;
let mut next_channel = 0;
let mut num_frames = 0;
// Fill the audio buffer with silence.
self.buf.clear();
self.buf.render_silence(None);
loop {
let tag = bs.read_bits_leq32(3)?;
match tag {
ALAC_ELEM_TAG_SCE | ALAC_ELEM_TAG_LFE => {
let out0 = self.buf.chan_mut(channel_map[next_channel] as usize);
num_frames =
decode_sce_or_cpe(&self.config, &mut bs, &mut self.tail_bits, out0, None)?;
next_channel += 1;
}
ALAC_ELEM_TAG_CPE => {
// There may only be one channel left in the output buffer, do not attempt to
// decode in this case.
if next_channel + 2 > num_channels {
break;
}
let (out0, out1) = self.buf.chan_pair_mut(
channel_map[next_channel + 0] as usize,
channel_map[next_channel + 1] as usize,
);
num_frames = decode_sce_or_cpe(
&self.config,
&mut bs,
&mut self.tail_bits,
out0,
Some(out1),
)?;
next_channel += 2;
}
ALAC_ELEM_TAG_DSE => {
let _tag = bs.read_bits_leq32(4)?;
let align_flag = bs.read_bool()?;
let count = match bs.read_bits_leq32(8)? {
val @ 0..=254 => val,
val @ 255 => val + bs.read_bits_leq32(8)?,
_ => unreachable!(),
};
if align_flag {
bs.realign();
}
bs.ignore_bits(8 * count)?;
}
ALAC_ELEM_TAG_FIL => {
let count = match bs.read_bits_leq32(4)? {
val @ 0..=14 => val,
val @ 15 => val + bs.read_bits_leq32(8)? - 1,
_ => unreachable!(),
};
bs.ignore_bits(8 * count)?;
}
ALAC_ELEM_TAG_CCE | ALAC_ELEM_TAG_PCE => {
// These elements are unsupported in ALAC version 0.
return decode_error("alac: unsupported element");
}
ALAC_ELEM_TAG_END => break,
_ => unreachable!(),
}
// Exit if all channels are decoded.
if next_channel >= num_channels {
break;
}
}
// Truncate the audio buffer to the number of samples of the last element.
self.buf.truncate(num_frames);
// The audio buffer is always signed 32-bit, but the actual bit-depth may be smaller. If
// the bit-depth is less-than 32, shift the final samples up.
let shift = 32 - self.config.bit_depth;
if shift > 0 {
self.buf.transform(|sample| sample << shift);
}
Ok(())
}
}
impl Decoder for AlacDecoder {
fn try_new(params: &CodecParameters, _: &DecoderOptions) -> Result<Self> {
// Verify codec type.
if params.codec != CODEC_TYPE_ALAC {
return unsupported_error("alac: invalid codec type");
}
// Read the config (magic cookie).
let config = if let Some(extra_data) = ¶ms.extra_data {
MagicCookie::try_read(&mut BufReader::new(extra_data))?
}
else {
return unsupported_error("alac: missing extra data");
};
let spec = SignalSpec::new(config.sample_rate, config.channel_layout.channels());
let buf = AudioBuffer::new(u64::from(config.frame_length), spec);
let max_tail_values = min(2, config.num_channels) as usize * config.frame_length as usize;
Ok(AlacDecoder { params: params.clone(), tail_bits: vec![0; max_tail_values], buf, config })
}
fn reset(&mut self) {
// Nothing to do.
}
fn supported_codecs() -> &'static [CodecDescriptor] {
&[support_codec!(CODEC_TYPE_ALAC, "alac", "Apple Lossless Audio Codec")]
}
fn codec_params(&self) -> &CodecParameters {
&self.params
}
fn decode(&mut self, packet: &Packet) -> Result<AudioBufferRef<'_>> {
if let Err(e) = self.decode_inner(packet) {
self.buf.clear();
Err(e)
}
else {
Ok(self.buf.as_audio_buffer_ref())
}
}
fn finalize(&mut self) -> FinalizeResult {
Default::default()
}
fn last_decoded(&self) -> AudioBufferRef<'_> {
self.buf.as_audio_buffer_ref()
}
}
/// Reads and decodes a SCE or CPE (if the second output channel not `None`).
fn decode_sce_or_cpe<B: ReadBitsLtr>(
config: &MagicCookie,
bs: &mut B,
tail_bits: &mut [u16],
out0: &mut [i32],
mut out1: Option<&mut [i32]>,
) -> Result<usize> {
// If the second output channel is provided, decode as a Channel Pair Element (CPE), otherwise
// as a Single Channel Element (SCE).
let is_cpe = out1.is_some();
// Element instance tag.
let _elem_instance_tag = bs.read_bits_leq32(4)?;
// Unused header bits.
if bs.read_bits_leq32(12)? != 0 {
return decode_error("alac: unused header bits not 0");
};
let is_partial_frame = bs.read_bool()?;
let shift = 8 * bs.read_bits_leq32(2)? as u8;
let is_uncompressed = bs.read_bool()?;
// The shift must not be >= 24-bits, or exceed the encoded bit-depth.
if shift >= 8 * 3 || shift >= config.bit_depth {
return decode_error("alac: invalid shift value");
}
// If this is a partial frame, then read the frame length from the element,
// otherwise use the frame length in the configuration.
let num_samples =
if is_partial_frame { bs.read_bits_leq32(32)? } else { config.frame_length } as usize;
if !is_uncompressed {
// The number of upper sample bits that will be predicted per channel. This may be less-than
// the bit-depth if the lower sample bits will be encoded separately. If decoding a CPE,
// each channel gets an extra bit allocated to it for mid-side encoding.
let pred_bits = config.bit_depth - shift + u8::from(is_cpe);
let mid_side_shift = bs.read_bits_leq32(8)? as u8;
let mid_side_weight = bs.read_bits_leq32_signed(8)?;
// For SCE elements, the mid-side parameters must (should?) be 0.
if !is_cpe && (mid_side_shift != 0 || mid_side_weight != 0) {
return decode_error("alac: invalid mixing information for mono channel");
}
// Read the headers for each channel in the element.
let mut elem0 = ElementChannel::try_read(bs, config, pred_bits)?;
let mut elem1 =
if is_cpe { Some(ElementChannel::try_read(bs, config, pred_bits)?) } else { None };
// If there is a shift, read and save the "tail" bits that will be appended to the predicted
// samples.
if shift > 0 {
let num_tail_values = if is_cpe { 2 } else { 1 } * num_samples;
for val in &mut tail_bits[..num_tail_values] {
*val = bs.read_bits_leq32(u32::from(shift))? as u16;
}
}
elem0.read_residuals(bs, &mut out0[..num_samples])?;
elem0.predict(&mut out0[..num_samples])?;
if let Some(out1) = out1.as_mut() {
let elem1 = elem1.as_mut().unwrap();
elem1.read_residuals(bs, &mut out1[..num_samples])?;
elem1.predict(&mut out1[..num_samples])?;
if mid_side_weight != 0 {
decorrelate_mid_side(out0, out1, mid_side_weight, mid_side_shift);
}
}
// If there is a shift, append the saved "tail" bits to each predicted sample.
if shift > 0 {
let out0_iter = out0[..num_samples].iter_mut();
if let Some(out1) = out1.as_mut() {
let out1_iter = out1[..num_samples].iter_mut();
let tail_iter = tail_bits[..2 * num_samples].chunks_exact(2);
// For a CPE, the tail bits are interleaved.
for ((s0, s1), vals) in out0_iter.zip(out1_iter).zip(tail_iter) {
*s0 = (*s0 << shift) | vals[0] as i32;
*s1 = (*s1 << shift) | vals[1] as i32;
}
}
else {
let tail_iter = tail_bits[..num_samples].iter();
for (s0, &val) in out0_iter.zip(tail_iter) {
*s0 = (*s0 << shift) | val as i32;
}
}
}
}
else {
// Read uncompressed samples directly from the bitstream.
if let Some(out1) = out1.as_mut() {
// For a CPE, the samples are interleaved.
for (s0, s1) in out0[..num_samples].iter_mut().zip(&mut out1[..num_samples]) {
*s0 = bs.read_bits_leq32_signed(u32::from(config.bit_depth))?;
*s1 = bs.read_bits_leq32_signed(u32::from(config.bit_depth))?;
}
}
else {
for s0 in out0[..num_samples].iter_mut() {
*s0 = bs.read_bits_leq32_signed(u32::from(config.bit_depth))?;
}
}
}
Ok(num_samples)
}
#[inline(always)]
fn lg3a(val: u32) -> u32 {
31 - ((val >> 9) + 3).leading_zeros()
}
/// Read a rice code from the bitstream.
#[inline(always)]
fn read_rice_code<B: ReadBitsLtr>(bs: &mut B, k: u32, kb: u32) -> Result<u32> {
let prefix = bs.read_unary_ones_capped(9)?;
// If the prefix is > 8, the value is read as an arbitrary width unsigned integer.
let value = if prefix > 8 {
bs.read_bits_leq32(kb)?
}
else if k > 1 {
// The reference decoder specifies prefix to be multiplied by a parameter `m`. The parameter
// `m` is always `(1<<k)-1` which is `2^k - 1`. This can be rewritten using a bit-shift.
let value = (prefix << k) - prefix;
// Ideally, we need to read, but not consume, `k` bits here. This is because if the value is
// less-than 2 we must only consume `k-1` bits. The bit reader does not support peeking,
// therefore, we read the `k-1` top-most bits. If the value is > 0, then the `k`-bit value
// would be > 2. In that case, we'll then read the least-significant bit in a second read
// operation.
let suffix = bs.read_bits_leq32(k - 1)?;
if suffix > 0 {
// Shift suffix left by 1 because it is missing its LSb, and then read the missing bit.
value + (suffix << 1) + bs.read_bit()? - 1
}
else {
value
}
}
else if k == 1 {
prefix
}
else {
0
};
Ok(value)
}
/// Converts the unsigned rice code into a signed i32.
#[inline(always)]
fn rice_code_to_signed(val: u32) -> i32 {
// The last bit of the decoded rice value is the sign-bit. See FLAC decoder for a derivation
// of this function.
(val >> 1) as i32 ^ -((val & 0x1) as i32)
}
/// Clips `num` most significant bits from the provided value and returns the result.
#[inline(always)]
fn clip_msbs(val: i32, num: u32) -> i32 {
(val << num) >> num
}
/// Decorrelates a mid-side channel pair.
fn decorrelate_mid_side(out0: &mut [i32], out1: &mut [i32], weight: i32, shift: u8) {
assert!(out0.len() == out1.len());
for (s0, s1) in out0.iter_mut().zip(out1.iter_mut()) {
*s0 = *s0 + *s1 - ((*s1 * weight) >> shift);
*s1 = *s0 - *s1;
}
}