1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
//! The `audio` module provides primitives for working with multi-channel audio buffers of varying
//! sample formats.
use std::borrow::Cow;
use std::fmt;
use std::marker::PhantomData;
use std::mem;
use std::vec::Vec;
use arrayvec::ArrayVec;
use bitflags::bitflags;
use crate::conv::{ConvertibleSample, FromSample, IntoSample};
use crate::errors::Result;
use crate::sample::{i24, u24, Sample};
use crate::units::Duration;
/// The maximum number of audio plane slices `AudioPlanes` or `AudioPlanesMut` will store on the
/// stack before storing the slices on the heap.
const AUDIO_PLANES_STORAGE_STACK_LIMIT: usize = 8;
bitflags! {
/// A bitmask representing the audio channels in an audio buffer or signal.
///
/// The first 18 defined channels are guaranteed to be identical to those specified by
/// Microsoft's WAVEFORMATEXTENSIBLE structure. Channels after 18 are defined by Symphonia and
/// no order is guaranteed.
#[derive(Default)]
pub struct Channels: u32 {
/// Front-left (left) or the Mono channel.
const FRONT_LEFT = 0x0000_0001;
/// Front-right (right) channel.
const FRONT_RIGHT = 0x0000_0002;
/// Front-centre (centre) channel.
const FRONT_CENTRE = 0x0000_0004;
/// Low frequency channel 1.
const LFE1 = 0x0000_0008;
/// Rear-left (surround rear left) channel.
const REAR_LEFT = 0x0000_0010;
/// Rear-right (surround rear right) channel.
const REAR_RIGHT = 0x0000_0020;
/// Front left-of-centre (left center) channel.
const FRONT_LEFT_CENTRE = 0x0000_0040;
/// Front right-of-centre (right center) channel.
const FRONT_RIGHT_CENTRE = 0x0000_0080;
/// Rear-centre (surround rear centre) channel.
const REAR_CENTRE = 0x0000_0100;
/// Side left (surround left) channel.
const SIDE_LEFT = 0x0000_0200;
/// Side right (surround right) channel.
const SIDE_RIGHT = 0x0000_0400;
/// Top centre channel.
const TOP_CENTRE = 0x0000_0800;
/// Top front-left channel.
const TOP_FRONT_LEFT = 0x0000_1000;
/// Top centre channel.
const TOP_FRONT_CENTRE = 0x0000_2000;
/// Top front-right channel.
const TOP_FRONT_RIGHT = 0x0000_4000;
/// Top rear-left channel.
const TOP_REAR_LEFT = 0x0000_8000;
/// Top rear-centre channel.
const TOP_REAR_CENTRE = 0x0001_0000;
/// Top rear-right channel.
const TOP_REAR_RIGHT = 0x0002_0000;
/// Rear left-of-centre channel.
const REAR_LEFT_CENTRE = 0x0004_0000;
/// Rear right-of-centre channel.
const REAR_RIGHT_CENTRE = 0x0008_0000;
/// Front left-wide channel.
const FRONT_LEFT_WIDE = 0x0010_0000;
/// Front right-wide channel.
const FRONT_RIGHT_WIDE = 0x0020_0000;
/// Front left-high channel.
const FRONT_LEFT_HIGH = 0x0040_0000;
/// Front centre-high channel.
const FRONT_CENTRE_HIGH = 0x0080_0000;
/// Front right-high channel.
const FRONT_RIGHT_HIGH = 0x0100_0000;
/// Low frequency channel 2.
const LFE2 = 0x0200_0000;
}
}
/// An iterator over individual channels within a `Channels` bitmask.
pub struct ChannelsIter {
channels: Channels,
}
impl Iterator for ChannelsIter {
type Item = Channels;
fn next(&mut self) -> Option<Self::Item> {
if !self.channels.is_empty() {
let channel = Channels::from_bits_truncate(1 << self.channels.bits.trailing_zeros());
self.channels ^= channel;
Some(channel)
}
else {
None
}
}
}
impl Channels {
/// Gets the number of channels.
pub fn count(self) -> usize {
self.bits.count_ones() as usize
}
/// Gets an iterator over individual channels.
pub fn iter(&self) -> ChannelsIter {
ChannelsIter { channels: *self }
}
}
impl fmt::Display for Channels {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:#032b}", self.bits)
}
}
/// `Layout` describes common audio channel configurations.
#[derive(Copy, Clone, Debug)]
pub enum Layout {
/// Single centre channel.
Mono,
/// Left and Right channels.
Stereo,
/// Left and Right channels with a single low-frequency channel.
TwoPointOne,
/// Front Left and Right, Rear Left and Right, and a single low-frequency channel.
FivePointOne,
}
impl Layout {
/// Converts a channel `Layout` into a `Channels` bit mask.
pub fn into_channels(self) -> Channels {
match self {
Layout::Mono => Channels::FRONT_LEFT,
Layout::Stereo => Channels::FRONT_LEFT | Channels::FRONT_RIGHT,
Layout::TwoPointOne => Channels::FRONT_LEFT | Channels::FRONT_RIGHT | Channels::LFE1,
Layout::FivePointOne => {
Channels::FRONT_LEFT
| Channels::FRONT_RIGHT
| Channels::FRONT_CENTRE
| Channels::REAR_LEFT
| Channels::REAR_RIGHT
| Channels::LFE1
}
}
}
}
/// `SignalSpec` describes the characteristics of a Signal.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SignalSpec {
/// The signal sampling rate in hertz (Hz).
pub rate: u32,
/// The channel assignments of the signal. The order of the channels in the vector is the order
/// in which each channel sample is stored in a frame.
pub channels: Channels,
}
impl SignalSpec {
pub fn new(rate: u32, channels: Channels) -> Self {
SignalSpec { rate, channels }
}
pub fn new_with_layout(rate: u32, layout: Layout) -> Self {
SignalSpec { rate, channels: layout.into_channels() }
}
}
/// Small-storage optimization capable storage of immutable slices of `AudioBuffer` audio planes.
enum AudioPlaneStorage<'a, S, const N: usize> {
Stack(ArrayVec<&'a [S], N>),
Heap(Vec<&'a [S]>),
}
/// `AudioPlanes` provides immutable slices to each audio channel (plane) contained in a signal.
pub struct AudioPlanes<'a, S: 'a + Sample> {
planes: AudioPlaneStorage<'a, S, AUDIO_PLANES_STORAGE_STACK_LIMIT>,
}
impl<'a, S: Sample> AudioPlanes<'a, S> {
/// Instantiate `AudioPlanes` for the given channel configuration.
fn new(channels: Channels) -> Self {
let n_planes = channels.count();
if n_planes <= AUDIO_PLANES_STORAGE_STACK_LIMIT {
AudioPlanes { planes: AudioPlaneStorage::Stack(ArrayVec::new()) }
}
else {
AudioPlanes { planes: AudioPlaneStorage::Heap(Vec::with_capacity(n_planes)) }
}
}
/// Push an immutable reference to an audio plane. This function may panic if the number of
/// pushed planes exceeds the number specified at instantiation.
fn push(&mut self, plane: &'a [S]) {
match &mut self.planes {
AudioPlaneStorage::Stack(planes) => {
debug_assert!(!planes.is_full());
planes.push(plane);
}
AudioPlaneStorage::Heap(planes) => {
planes.push(plane);
}
}
}
/// Gets immutable slices of all the audio planes.
pub fn planes(&self) -> &[&'a [S]] {
match &self.planes {
AudioPlaneStorage::Stack(planes) => planes,
AudioPlaneStorage::Heap(planes) => planes,
}
}
}
/// Small-storage optimization capable storage of mutable slices of `AudioBuffer` audio planes.
enum AudioPlaneStorageMut<'a, S, const N: usize> {
Stack(ArrayVec<&'a mut [S], N>),
Heap(Vec<&'a mut [S]>),
}
/// `AudioPlanesMut` provides mutable slices to each audio channel (plane) contained in a signal.
pub struct AudioPlanesMut<'a, S: 'a + Sample> {
planes: AudioPlaneStorageMut<'a, S, AUDIO_PLANES_STORAGE_STACK_LIMIT>,
}
impl<'a, S: Sample> AudioPlanesMut<'a, S> {
/// Instantiate `AudioPlanesMut` for the given channel configuration.
fn new(channels: Channels) -> Self {
let n_planes = channels.count();
if n_planes <= AUDIO_PLANES_STORAGE_STACK_LIMIT {
AudioPlanesMut { planes: AudioPlaneStorageMut::Stack(ArrayVec::new()) }
}
else {
AudioPlanesMut { planes: AudioPlaneStorageMut::Heap(Vec::with_capacity(n_planes)) }
}
}
/// Push a mutable reference to an audio plane. This function may panic if the number of
/// pushed planes exceeds the number specified at instantiation.
fn push(&mut self, plane: &'a mut [S]) {
match &mut self.planes {
AudioPlaneStorageMut::Stack(planes) => {
debug_assert!(!planes.is_full());
planes.push(plane);
}
AudioPlaneStorageMut::Heap(storage) => {
storage.push(plane);
}
}
}
/// Gets mutable slices of all the audio planes.
pub fn planes(&mut self) -> &mut [&'a mut [S]] {
match &mut self.planes {
AudioPlaneStorageMut::Stack(planes) => planes,
AudioPlaneStorageMut::Heap(planes) => planes,
}
}
}
/// `AudioBuffer` is a container for multi-channel planar audio sample data. An `AudioBuffer` is
/// characterized by the duration (capacity), and audio specification (channels and sample rate).
/// The capacity of an `AudioBuffer` is the maximum number of samples the buffer may store per
/// channel. Manipulation of samples is accomplished through the Signal trait or direct buffer
/// manipulation.
#[derive(Clone)]
pub struct AudioBuffer<S: Sample> {
buf: Vec<S>,
spec: SignalSpec,
n_frames: usize,
n_capacity: usize,
}
impl<S: Sample> AudioBuffer<S> {
/// Instantiate a new `AudioBuffer` using the specified signal specification and of the given
/// duration.
pub fn new(duration: Duration, spec: SignalSpec) -> Self {
// The number of channels * duration cannot exceed u64::MAX.
assert!(duration <= u64::MAX / spec.channels.count() as u64, "duration too large");
// The total number of samples the buffer will store.
let n_samples = duration * spec.channels.count() as u64;
// Practically speaking, it is not possible to allocate more than usize::MAX bytes of
// samples. This assertion ensures the potential downcast of n_samples to usize below is
// safe.
assert!(n_samples <= (usize::MAX / mem::size_of::<S>()) as u64, "duration too large");
// Allocate sample buffer and default initialize all samples to silence.
let buf = vec![S::MID; n_samples as usize];
AudioBuffer { buf, spec, n_frames: 0, n_capacity: duration as usize }
}
/// Instantiates an unused `AudioBuffer`. An unused `AudioBuffer` will not allocate any memory,
/// has a sample rate of 0, and no audio channels.
pub fn unused() -> Self {
AudioBuffer {
buf: Vec::with_capacity(0),
spec: SignalSpec::new(0, Channels::empty()),
n_frames: 0,
n_capacity: 0,
}
}
/// Returns `true` if the `AudioBuffer` is unused.
pub fn is_unused(&self) -> bool {
self.n_capacity == 0
}
/// Gets the signal specification for the buffer.
pub fn spec(&self) -> &SignalSpec {
&self.spec
}
/// Gets the total capacity of the buffer. The capacity is the maximum number of audio frames
/// a buffer can store.
pub fn capacity(&self) -> usize {
self.n_capacity
}
/// Gets immutable references to all audio planes (channels) within the audio buffer.
///
/// Note: This is not a cheap operation for audio buffers with > 8 channels. It is advisable
/// that this call is only used when operating on large batches of frames. Generally speaking,
/// it is almost always better to use `chan()` to selectively choose the plane to read instead.
pub fn planes(&self) -> AudioPlanes<S> {
// Fill the audio planes structure with references to the written portion of each audio
// plane.
let mut planes = AudioPlanes::new(self.spec.channels);
for channel in self.buf.chunks_exact(self.n_capacity) {
planes.push(&channel[..self.n_frames]);
}
planes
}
/// Gets mutable references to all audio planes (channels) within the buffer.
///
/// Note: This is not a cheap operation for audio buffers with > 8 channels. It is advisable
/// that this call is only used when modifying large batches of frames. Generally speaking,
/// it is almost always better to use `render()`, `fill()`, `chan_mut()`, and `chan_pair_mut()`
/// to modify the buffer instead.
pub fn planes_mut(&mut self) -> AudioPlanesMut<S> {
// Fill the audio planes structure with references to the written portion of each audio
// plane.
let mut planes = AudioPlanesMut::new(self.spec.channels);
for channel in self.buf.chunks_exact_mut(self.n_capacity) {
planes.push(&mut channel[..self.n_frames]);
}
planes
}
/// Converts the contents of an AudioBuffer into an equivalent destination AudioBuffer of a
/// different type. If the types are the same then this is a copy operation.
pub fn convert<T: Sample>(&self, dest: &mut AudioBuffer<T>)
where
S: IntoSample<T>,
{
assert!(dest.n_capacity >= self.n_capacity);
assert!(dest.spec == self.spec);
for c in 0..self.spec.channels.count() {
let begin = c * self.n_capacity;
let end = begin + self.n_frames;
for (d, s) in dest.buf[begin..end].iter_mut().zip(&self.buf[begin..end]) {
*d = (*s).into_sample();
}
}
dest.n_frames = self.n_frames;
}
/// Makes an equivalent AudioBuffer of a different type.
pub fn make_equivalent<E: Sample>(&self) -> AudioBuffer<E> {
AudioBuffer::<E>::new(self.n_capacity as Duration, self.spec)
}
}
macro_rules! impl_audio_buffer_ref_func {
($var:expr, $buf:ident,$expr:expr) => {
match $var {
AudioBufferRef::U8($buf) => $expr,
AudioBufferRef::U16($buf) => $expr,
AudioBufferRef::U24($buf) => $expr,
AudioBufferRef::U32($buf) => $expr,
AudioBufferRef::S8($buf) => $expr,
AudioBufferRef::S16($buf) => $expr,
AudioBufferRef::S24($buf) => $expr,
AudioBufferRef::S32($buf) => $expr,
AudioBufferRef::F32($buf) => $expr,
AudioBufferRef::F64($buf) => $expr,
}
};
}
/// `AudioBufferRef` is a copy-on-write reference to an `AudioBuffer` of any type.
#[derive(Clone)]
pub enum AudioBufferRef<'a> {
U8(Cow<'a, AudioBuffer<u8>>),
U16(Cow<'a, AudioBuffer<u16>>),
U24(Cow<'a, AudioBuffer<u24>>),
U32(Cow<'a, AudioBuffer<u32>>),
S8(Cow<'a, AudioBuffer<i8>>),
S16(Cow<'a, AudioBuffer<i16>>),
S24(Cow<'a, AudioBuffer<i24>>),
S32(Cow<'a, AudioBuffer<i32>>),
F32(Cow<'a, AudioBuffer<f32>>),
F64(Cow<'a, AudioBuffer<f64>>),
}
impl<'a> AudioBufferRef<'a> {
/// Gets the signal specification for the buffer.
pub fn spec(&self) -> &SignalSpec {
impl_audio_buffer_ref_func!(self, buf, buf.spec())
}
/// Gets the total capacity of the buffer. The capacity is the maximum number of audio frames
/// a buffer can store.
pub fn capacity(&self) -> usize {
impl_audio_buffer_ref_func!(self, buf, buf.capacity())
}
/// Gets the number of frames in the buffer.
pub fn frames(&self) -> usize {
impl_audio_buffer_ref_func!(self, buf, buf.frames())
}
pub fn convert<T>(&self, dest: &mut AudioBuffer<T>)
where
T: Sample
+ FromSample<u8>
+ FromSample<u16>
+ FromSample<u24>
+ FromSample<u32>
+ FromSample<i8>
+ FromSample<i16>
+ FromSample<i24>
+ FromSample<i32>
+ FromSample<f32>
+ FromSample<f64>,
{
impl_audio_buffer_ref_func!(self, buf, buf.convert(dest))
}
pub fn make_equivalent<E: Sample>(&self) -> AudioBuffer<E> {
impl_audio_buffer_ref_func!(self, buf, buf.make_equivalent::<E>())
}
}
/// `AsAudioBufferRef` is a trait implemented for `AudioBuffer`s that may be referenced in an
/// `AudioBufferRef`.
pub trait AsAudioBufferRef {
/// Get an `AudioBufferRef` reference.
fn as_audio_buffer_ref(&self) -> AudioBufferRef;
}
macro_rules! impl_as_audio_buffer_ref {
($fmt:ty, $ref:path) => {
impl AsAudioBufferRef for AudioBuffer<$fmt> {
fn as_audio_buffer_ref(&self) -> AudioBufferRef {
$ref(Cow::Borrowed(self))
}
}
};
}
impl_as_audio_buffer_ref!(u8, AudioBufferRef::U8);
impl_as_audio_buffer_ref!(u16, AudioBufferRef::U16);
impl_as_audio_buffer_ref!(u24, AudioBufferRef::U24);
impl_as_audio_buffer_ref!(u32, AudioBufferRef::U32);
impl_as_audio_buffer_ref!(i8, AudioBufferRef::S8);
impl_as_audio_buffer_ref!(i16, AudioBufferRef::S16);
impl_as_audio_buffer_ref!(i24, AudioBufferRef::S24);
impl_as_audio_buffer_ref!(i32, AudioBufferRef::S32);
impl_as_audio_buffer_ref!(f32, AudioBufferRef::F32);
impl_as_audio_buffer_ref!(f64, AudioBufferRef::F64);
/// The `Signal` trait provides methods for rendering and transforming contiguous buffers of audio
/// data.
pub trait Signal<S: Sample> {
/// Gets the number of actual frames written to the buffer. Conversely, this also is the number
/// of written samples in any one channel.
fn frames(&self) -> usize;
/// Clears all written frames from the buffer. This is a cheap operation and does not zero the
/// underlying audio data.
fn clear(&mut self);
/// Gets an immutable reference to all the written samples in the specified channel.
fn chan(&self, channel: usize) -> &[S];
/// Gets a mutable reference to all the written samples in the specified channel.
fn chan_mut(&mut self, channel: usize) -> &mut [S];
/// Gets two mutable references to two different channels.
fn chan_pair_mut(&mut self, first: usize, second: usize) -> (&mut [S], &mut [S]);
/// Renders a number of silent frames.
///
/// If `n_frames` is `None`, the remaining number of frames will be used.
fn render_silence(&mut self, n_frames: Option<usize>);
/// Renders a reserved number of frames. This is a cheap operation and simply advances the frame
/// counter. The underlying audio data is not modified and should be overwritten through other
/// means.
///
/// If `n_frames` is `None`, the remaining number of frames will be used. If `n_frames` is too
/// large, this function will assert.
fn render_reserved(&mut self, n_frames: Option<usize>);
/// Renders a number of frames using the provided render function. The number of frames to
/// render is specified by `n_frames`. If `n_frames` is `None`, the remaining number of frames
/// in the buffer will be rendered. If the render function returns an error, the render
/// operation is terminated prematurely.
fn render<'a, F>(&'a mut self, n_frames: Option<usize>, render: F) -> Result<()>
where
F: FnMut(&mut AudioPlanesMut<'a, S>, usize) -> Result<()>;
/// Clears, and then renders the entire buffer using the fill function. This is a convenience
/// wrapper around `render` and exhibits the same behaviour as `render` in regards to the fill
/// function.
#[inline]
fn fill<'a, F>(&'a mut self, fill: F) -> Result<()>
where
F: FnMut(&mut AudioPlanesMut<'a, S>, usize) -> Result<()>,
{
self.clear();
self.render(None, fill)
}
/// Transforms every written sample in the signal using the transformation function provided.
/// This function does not guarantee an order in which the samples are transformed.
fn transform<F>(&mut self, f: F)
where
F: Fn(S) -> S;
/// Truncates the buffer to the number of frames specified. If the number of frames in the
/// buffer is less-than the number of frames specified, then this function does nothing.
fn truncate(&mut self, n_frames: usize);
/// Shifts the contents of the buffer back by the number of frames specified. The leading frames
/// are dropped from the buffer.
fn shift(&mut self, shift: usize);
/// Trims samples from the start and end of the buffer.
fn trim(&mut self, start: usize, end: usize) {
// First, trim the end to reduce the number of frames have to be shifted when the front is
// trimmed.
self.truncate(self.frames().saturating_sub(end));
// Second, trim the start.
self.shift(start);
}
}
impl<S: Sample> Signal<S> for AudioBuffer<S> {
fn clear(&mut self) {
self.n_frames = 0;
}
fn frames(&self) -> usize {
self.n_frames
}
fn chan(&self, channel: usize) -> &[S] {
let start = channel * self.n_capacity;
// If the channel index is invalid the slice will be out-of-bounds.
assert!(start + self.n_capacity <= self.buf.len(), "invalid channel index");
&self.buf[start..start + self.n_frames]
}
fn chan_mut(&mut self, channel: usize) -> &mut [S] {
let start = channel * self.n_capacity;
// If the channel index is invalid the slice will be out-of-bounds.
assert!(start + self.n_capacity <= self.buf.len(), "invalid channel index");
&mut self.buf[start..start + self.n_frames]
}
fn chan_pair_mut(&mut self, first: usize, second: usize) -> (&mut [S], &mut [S]) {
// Both channels in the pair must be unique.
assert!(first != second, "channel indicies cannot be the same");
let first_idx = self.n_capacity * first;
let second_idx = self.n_capacity * second;
// If a channel index is invalid the slice will be out-of-bounds.
assert!(first_idx + self.n_capacity <= self.buf.len(), "invalid channel index");
assert!(second_idx + self.n_capacity <= self.buf.len(), "invalid channel index");
if first_idx < second_idx {
let (a, b) = self.buf.split_at_mut(second_idx);
(&mut a[first_idx..first_idx + self.n_frames], &mut b[..self.n_frames])
}
else {
let (a, b) = self.buf.split_at_mut(first_idx);
(&mut b[..self.n_frames], &mut a[second_idx..second_idx + self.n_frames])
}
}
fn render_silence(&mut self, n_frames: Option<usize>) {
let n_silent_frames = n_frames.unwrap_or(self.n_capacity - self.n_frames);
// Do not render past the end of the audio buffer.
assert!(self.n_frames + n_silent_frames <= self.capacity(), "capacity will be exceeded");
for channel in self.buf.chunks_exact_mut(self.n_capacity) {
for sample in &mut channel[self.n_frames..self.n_frames + n_silent_frames] {
*sample = S::MID;
}
}
self.n_frames += n_silent_frames;
}
fn render_reserved(&mut self, n_frames: Option<usize>) {
let n_reserved_frames = n_frames.unwrap_or(self.n_capacity - self.n_frames);
// Do not render past the end of the audio buffer.
assert!(self.n_frames + n_reserved_frames <= self.n_capacity, "capacity will be exceeded");
self.n_frames += n_reserved_frames;
}
fn render<'a, F>(&'a mut self, n_frames: Option<usize>, mut render: F) -> Result<()>
where
F: FnMut(&mut AudioPlanesMut<'a, S>, usize) -> Result<()>,
{
// The number of frames to be rendered is the amount requested, if specified, or the
// remainder of the audio buffer.
let n_render_frames = n_frames.unwrap_or(self.n_capacity - self.n_frames);
// Do not render past the end of the audio buffer.
let end = self.n_frames + n_render_frames;
assert!(end <= self.n_capacity, "capacity will be exceeded");
// At this point, n_render_frames can be considered "reserved". Create an audio plane
// structure and fill each plane entry with a reference to the "reserved" samples in each
// channel respectively.
let mut planes = AudioPlanesMut::new(self.spec.channels);
for channel in self.buf.chunks_exact_mut(self.n_capacity) {
planes.push(&mut channel[self.n_frames..end]);
}
// Attempt to render the into the reserved frames, one-by-one, exiting only if there is an
// error in the render function.
while self.n_frames < end {
render(&mut planes, self.n_frames)?;
self.n_frames += 1;
}
Ok(())
}
fn transform<F>(&mut self, f: F)
where
F: Fn(S) -> S,
{
debug_assert!(self.n_frames <= self.n_capacity);
// Apply the transformation function over each sample in each plane.
for plane in self.buf.chunks_mut(self.n_capacity) {
for sample in &mut plane[0..self.n_frames] {
*sample = f(*sample);
}
}
}
fn truncate(&mut self, n_frames: usize) {
if n_frames < self.n_frames {
self.n_frames = n_frames;
}
}
fn shift(&mut self, shift: usize) {
if shift >= self.n_frames {
self.clear();
}
else if shift > 0 {
// Shift the samples down in each plane.
for plane in self.buf.chunks_mut(self.n_capacity) {
plane.copy_within(shift..self.n_frames, 0);
}
self.n_frames -= shift;
}
}
}
/// A `SampleBuffer`, is a sample oriented buffer. It is agnostic to the ordering/layout of samples
/// within the buffer. `SampleBuffer` is mean't for safely importing and exporting sample data to
/// and from Symphonia using the sample's in-memory data-type.
pub struct SampleBuffer<S: Sample> {
buf: Box<[S]>,
n_written: usize,
}
impl<S: Sample> SampleBuffer<S> {
/// Instantiate a new `SampleBuffer` using the specified signal specification and of the given
/// duration.
pub fn new(duration: Duration, spec: SignalSpec) -> SampleBuffer<S> {
// The number of channels * duration cannot exceed u64::MAX.
assert!(duration <= u64::MAX / spec.channels.count() as u64, "duration too large");
// The total number of samples the buffer will store.
let n_samples = duration * spec.channels.count() as u64;
// Practically speaking, it is not possible to allocate more than usize::MAX bytes of
// samples. This assertion ensures the potential downcast of n_samples to usize below is
// safe.
assert!(n_samples <= (usize::MAX / mem::size_of::<S>()) as u64, "duration too large");
// Allocate enough memory for all the samples and fill the buffer with silence.
let buf = vec![S::MID; n_samples as usize].into_boxed_slice();
SampleBuffer { buf, n_written: 0 }
}
/// Gets the number of written samples.
pub fn len(&self) -> usize {
self.n_written
}
/// Returns `true` if the buffer contains no written samples.
pub fn is_empty(&self) -> bool {
self.n_written == 0
}
/// Gets an immutable slice of all written samples.
pub fn samples(&self) -> &[S] {
&self.buf[..self.n_written]
}
/// Gets a mutable slice of all written samples.
pub fn samples_mut(&mut self) -> &mut [S] {
&mut self.buf[..self.n_written]
}
/// Gets the maximum number of samples the `SampleBuffer` may store.
pub fn capacity(&self) -> usize {
self.buf.len()
}
/// Clears all written samples.
pub fn clear(&mut self) {
self.n_written = 0;
}
/// Copies all audio data from the source `AudioBufferRef` in planar channel order into the
/// `SampleBuffer`. The two buffers must be equivalent.
pub fn copy_planar_ref(&mut self, src: AudioBufferRef)
where
S: ConvertibleSample,
{
match src {
AudioBufferRef::U8(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::U16(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::U24(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::U32(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::S8(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::S16(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::S24(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::S32(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::F32(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::F64(buf) => self.copy_planar_typed(&buf),
}
}
/// Copies all audio data from a source `AudioBuffer` into the `SampleBuffer` in planar
/// channel order. The two buffers must be equivalent.
pub fn copy_planar_typed<F>(&mut self, src: &AudioBuffer<F>)
where
F: Sample + IntoSample<S>,
{
let n_frames = src.frames();
let n_channels = src.spec.channels.count();
let n_samples = n_frames * n_channels;
// Ensure that the capacity of the sample buffer is greater than or equal to the number
// of samples that will be copied from the source buffer.
assert!(self.capacity() >= n_samples);
for ch in 0..n_channels {
let ch_slice = src.chan(ch);
for (dst, src) in self.buf[ch * n_frames..].iter_mut().zip(ch_slice) {
*dst = (*src).into_sample();
}
}
// Commit the written samples.
self.n_written = n_samples;
}
/// Copies all audio data from the source `AudioBufferRef` in interleaved channel order into the
/// `SampleBuffer`. The two buffers must be equivalent.
pub fn copy_interleaved_ref(&mut self, src: AudioBufferRef)
where
S: ConvertibleSample,
{
match src {
AudioBufferRef::U8(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::U16(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::U24(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::U32(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::S8(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::S16(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::S24(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::S32(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::F32(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::F64(buf) => self.copy_interleaved_typed(&buf),
}
}
/// Copies all audio samples from a source `AudioBuffer` into the `SampleBuffer` in interleaved
/// channel order. The two buffers must be equivalent.
pub fn copy_interleaved_typed<F>(&mut self, src: &AudioBuffer<F>)
where
F: Sample + IntoSample<S>,
{
let n_channels = src.spec.channels.count();
let n_samples = src.frames() * n_channels;
// Ensure that the capacity of the sample buffer is greater than or equal to the number
// of samples that will be copied from the source buffer.
assert!(self.capacity() >= n_samples);
// Interleave the source buffer channels into the sample buffer.
for ch in 0..n_channels {
let ch_slice = src.chan(ch);
for (dst, src) in self.buf[ch..].iter_mut().step_by(n_channels).zip(ch_slice) {
*dst = (*src).into_sample();
}
}
// Commit the written samples.
self.n_written = n_samples;
}
}
/// This non-public module contains the trait `Sealed` which is used to constrain
/// `RawSample::RawType` with `bytemuck::Pod`. This is a trade-off to hide `bytemuck` from the public
/// interface. The downside is that `RawSample::RawType` is locked to the types we implement
/// `Sealed` on. To compensate, we implement `Sealed` on all primitive numeric data types, and byte
/// arrays up to 8 bytes long.
mod sealed {
pub trait Sealed: bytemuck::Pod {}
}
impl sealed::Sealed for u8 {}
impl sealed::Sealed for i8 {}
impl sealed::Sealed for u16 {}
impl sealed::Sealed for i16 {}
impl sealed::Sealed for u32 {}
impl sealed::Sealed for i32 {}
impl sealed::Sealed for u64 {}
impl sealed::Sealed for i64 {}
impl sealed::Sealed for f32 {}
impl sealed::Sealed for f64 {}
impl sealed::Sealed for [u8; 1] {}
impl sealed::Sealed for [u8; 2] {}
impl sealed::Sealed for [u8; 3] {}
impl sealed::Sealed for [u8; 4] {}
impl sealed::Sealed for [u8; 5] {}
impl sealed::Sealed for [u8; 6] {}
impl sealed::Sealed for [u8; 7] {}
impl sealed::Sealed for [u8; 8] {}
/// `RawSample` provides a typed interface for converting a `Sample` from it's in-memory data type
/// to actual binary type.
pub trait RawSample: Sample {
/// The `RawType` is a primitive data type, or fixed-size byte array, that is the final binary
/// representation of the sample when written out to a byte-buffer.
type RawType: Copy + Default + sealed::Sealed;
fn into_raw_sample(self) -> Self::RawType;
}
impl RawSample for u8 {
type RawType = u8;
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self
}
}
impl RawSample for i8 {
type RawType = i8;
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self
}
}
impl RawSample for u16 {
type RawType = u16;
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self
}
}
impl RawSample for i16 {
type RawType = i16;
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self
}
}
impl RawSample for u24 {
type RawType = [u8; 3];
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self.to_ne_bytes()
}
}
impl RawSample for i24 {
type RawType = [u8; 3];
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self.to_ne_bytes()
}
}
impl RawSample for u32 {
type RawType = u32;
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self
}
}
impl RawSample for i32 {
type RawType = i32;
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self
}
}
impl RawSample for f32 {
type RawType = f32;
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self
}
}
impl RawSample for f64 {
type RawType = f64;
#[inline(always)]
fn into_raw_sample(self) -> Self::RawType {
self
}
}
/// A `RawSampleBuffer`, is a byte-oriented sample buffer. All samples copied to this buffer are
/// converted into their packed data-type and stored as a stream of bytes. `RawSampleBuffer` is
/// mean't for safely importing and exporting sample data to and from Symphonia as raw bytes.
pub struct RawSampleBuffer<S: Sample + RawSample> {
buf: Box<[S::RawType]>,
n_written: usize,
// Might take your heart.
sample_format: PhantomData<S>,
}
impl<S: Sample + RawSample> RawSampleBuffer<S> {
/// Instantiate a new `RawSampleBuffer` using the specified signal specification and of the given
/// duration.
pub fn new(duration: Duration, spec: SignalSpec) -> RawSampleBuffer<S> {
// The number of channels * duration cannot exceed u64::MAX.
assert!(duration <= u64::MAX / spec.channels.count() as u64, "duration too large");
// The total number of samples the buffer will store.
let n_samples = duration * spec.channels.count() as u64;
// Practically speaking, it is not possible to allocate more than usize::MAX bytes of raw
// samples. This assertion ensures the potential downcast of n_samples to usize below is
// safe.
assert!(
n_samples <= (usize::MAX / mem::size_of::<S::RawType>()) as u64,
"duration too large"
);
// Allocate enough memory for all the samples and fill the buffer with silence.
let buf = vec![S::MID.into_raw_sample(); n_samples as usize].into_boxed_slice();
RawSampleBuffer { buf, n_written: 0, sample_format: PhantomData }
}
/// Gets the number of written samples.
pub fn len(&self) -> usize {
self.n_written
}
/// Returns `true` if the buffer contains no written samples.
pub fn is_empty(&self) -> bool {
self.n_written == 0
}
/// Gets the maximum number of samples the `RawSampleBuffer` may store.
pub fn capacity(&self) -> usize {
self.buf.len()
}
/// Clears all written samples.
pub fn clear(&mut self) {
self.n_written = 0;
}
/// Gets an immutable slice to the bytes of the sample's written in the `RawSampleBuffer`.
pub fn as_bytes(&self) -> &[u8] {
// Get a slice to the written raw samples in the buffer, and convert from &[RawType] to
// &[u8]. Since &[u8] has the least strict alignment requirements, this should always be
// safe and therefore cast_slice should never panic.
bytemuck::cast_slice(&self.buf[..self.n_written])
}
/// Copies all audio data from the source `AudioBufferRef` in planar channel order into the
/// `RawSampleBuffer`. The two buffers must be equivalent.
pub fn copy_planar_ref(&mut self, src: AudioBufferRef)
where
S: ConvertibleSample,
{
match src {
AudioBufferRef::U8(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::U16(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::U24(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::U32(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::S8(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::S16(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::S24(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::S32(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::F32(buf) => self.copy_planar_typed(&buf),
AudioBufferRef::F64(buf) => self.copy_planar_typed(&buf),
}
}
/// Copies all audio data from a source `AudioBuffer` that is of a different sample format type
/// than that of the `RawSampleBuffer` in planar channel order. The two buffers must be
/// equivalent.
pub fn copy_planar_typed<F>(&mut self, src: &AudioBuffer<F>)
where
F: Sample + IntoSample<S>,
{
let n_channels = src.spec.channels.count();
let n_samples = n_channels * src.n_frames;
// Ensure that the capacity of the sample buffer is greater than or equal to the number
// of samples that will be copied from the source buffer.
assert!(self.capacity() >= n_samples);
let dst_buf = &mut self.buf[..n_samples];
for (ch, dst_ch) in dst_buf.chunks_exact_mut(src.n_frames).enumerate() {
let src_ch = src.chan(ch);
for (&s, d) in src_ch.iter().zip(dst_ch) {
*d = s.into_sample().into_raw_sample();
}
}
self.n_written = n_samples;
}
/// Copies all audio data from the source `AudioBuffer` to the `RawSampleBuffer` in planar order.
/// The two buffers must be equivalent.
pub fn copy_planar(&mut self, src: &AudioBuffer<S>) {
let n_channels = src.spec.channels.count();
let n_samples = src.n_frames * n_channels;
// Ensure that the capacity of the sample buffer is greater than or equal to the number
// of samples that will be copied from the source buffer.
assert!(self.capacity() >= n_samples);
let dst_buf = &mut self.buf[..n_samples];
for (ch, dst_ch) in dst_buf.chunks_exact_mut(src.n_frames).enumerate() {
let src_ch = src.chan(ch);
for (&s, d) in src_ch.iter().zip(dst_ch) {
*d = s.into_raw_sample();
}
}
self.n_written = n_samples;
}
/// Copies all audio data from the source `AudioBufferRef` in interleaved channel order into the
/// `RawSampleBuffer`. The two buffers must be equivalent.
pub fn copy_interleaved_ref(&mut self, src: AudioBufferRef)
where
S: ConvertibleSample,
{
match src {
AudioBufferRef::U8(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::U16(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::U24(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::U32(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::S8(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::S16(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::S24(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::S32(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::F32(buf) => self.copy_interleaved_typed(&buf),
AudioBufferRef::F64(buf) => self.copy_interleaved_typed(&buf),
}
}
/// Copies all audio data from a source `AudioBuffer` that is of a different sample format type
/// than that of the `RawSampleBuffer` in interleaved channel order. The two buffers must be
/// equivalent.
pub fn copy_interleaved_typed<F>(&mut self, src: &AudioBuffer<F>)
where
F: Sample + IntoSample<S>,
{
let n_frames = src.n_frames;
let n_channels = src.spec.channels.count();
let n_samples = n_frames * n_channels;
// Ensure that the capacity of the sample buffer is greater than or equal to the number
// of samples that will be copied from the source buffer.
assert!(self.capacity() >= n_samples);
// The destination buffer slice.
let dst_buf = &mut self.buf[..n_samples];
// Provide slightly optimized interleave algorithms for Mono and Stereo buffers.
match n_channels {
// No channels, do nothing.
0 => (),
// Mono
1 => {
for (&s, d) in src.chan(0).iter().zip(dst_buf) {
*d = s.into_sample().into_raw_sample();
}
}
// Stereo
2 => {
let l_buf = src.chan(0);
let r_buf = src.chan(1);
for ((&l, &r), d) in l_buf.iter().zip(r_buf).zip(dst_buf.chunks_exact_mut(2)) {
d[0] = l.into_sample().into_raw_sample();
d[1] = r.into_sample().into_raw_sample();
}
}
// 3+ channels
_ => {
for ch in 0..n_channels {
let src_ch = src.chan(ch);
let dst_ch_iter = dst_buf[ch..].iter_mut().step_by(n_channels);
for (&s, d) in src_ch.iter().zip(dst_ch_iter) {
*d = s.into_sample().into_raw_sample();
}
}
}
}
self.n_written = n_samples;
}
/// Copies all audio data from the source `AudioBuffer` to the `RawSampleBuffer` in interleaved
/// channel order. The two buffers must be equivalent.
pub fn copy_interleaved(&mut self, src: &AudioBuffer<S>) {
let n_frames = src.n_frames;
let n_channels = src.spec.channels.count();
let n_samples = n_frames * n_channels;
// Ensure that the capacity of the sample buffer is greater than or equal to the number
// of samples that will be copied from the source buffer.
assert!(self.capacity() >= n_samples);
// The destination buffer slice.
let dst_buf = &mut self.buf[..n_samples];
// Provide slightly optimized interleave algorithms for Mono and Stereo buffers.
match n_channels {
// No channels, do nothing.
0 => (),
// Mono
1 => {
for (&s, d) in src.chan(0).iter().zip(dst_buf) {
*d = s.into_raw_sample();
}
}
// Stereo
2 => {
let l_buf = src.chan(0);
let r_buf = src.chan(1);
for ((&l, &r), d) in l_buf.iter().zip(r_buf).zip(dst_buf.chunks_exact_mut(2)) {
d[0] = l.into_raw_sample();
d[1] = r.into_raw_sample();
}
}
// 3+ channels
_ => {
for ch in 0..n_channels {
let src_ch = src.chan(ch);
let dst_ch_iter = dst_buf[ch..].iter_mut().step_by(n_channels);
for (&s, d) in src_ch.iter().zip(dst_ch_iter) {
*d = s.into_raw_sample();
}
}
}
}
self.n_written = n_samples;
}
}