1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
//! The `units` module provides definitions for common units.
use std::fmt;
/// A `TimeStamp` represents an instantenous instant in time since the start of a stream. One
/// `TimeStamp` "tick" is equivalent to the stream's `TimeBase` in seconds.
pub type TimeStamp = u64;
/// A `Duration` indicates a positive span of time.
pub type Duration = u64;
/// `Time` represents a duration of time in seconds, or the number of seconds since an arbitrary
/// epoch. `Time` is stored as an integer number of seconds plus any remaining fraction of a second
/// as a floating point value.
#[derive(Copy, Clone, Debug, Default, PartialEq, PartialOrd)]
pub struct Time {
pub seconds: u64,
pub frac: f64,
}
impl Time {
const SECONDS_PER_MINUTE: u64 = 60;
const SECONDS_PER_HOUR: u64 = 60 * 60;
const NANOSECONDS_PER_SECOND: u32 = 1_000_000_000;
const NANOSECONDS_PER_SECOND_INV: f64 = 1.0 / 1_000_000_000.0;
pub fn new(seconds: u64, frac: f64) -> Self {
Time { seconds, frac }
}
pub fn from_ss(s: u8, ns: u32) -> Option<Time> {
if s > 59 || ns >= Time::NANOSECONDS_PER_SECOND {
return None;
}
let seconds = u64::from(s);
let frac = Time::NANOSECONDS_PER_SECOND_INV * f64::from(ns);
Some(Time { seconds, frac })
}
pub fn from_mmss(m: u8, s: u8, ns: u32) -> Option<Time> {
if m > 59 || s > 59 || ns >= Time::NANOSECONDS_PER_SECOND {
return None;
}
let seconds = (Time::SECONDS_PER_MINUTE * u64::from(m)) + u64::from(s);
let frac = Time::NANOSECONDS_PER_SECOND_INV * f64::from(ns);
Some(Time { seconds, frac })
}
pub fn from_hhmmss(h: u32, m: u8, s: u8, ns: u32) -> Option<Time> {
if m > 59 || s > 59 || ns >= Time::NANOSECONDS_PER_SECOND {
return None;
}
let seconds = (Time::SECONDS_PER_HOUR * u64::from(h))
+ (Time::SECONDS_PER_MINUTE * u64::from(m))
+ u64::from(s);
let frac = Time::NANOSECONDS_PER_SECOND_INV * f64::from(ns);
Some(Time { seconds, frac })
}
}
impl From<u8> for Time {
fn from(seconds: u8) -> Self {
Time::new(u64::from(seconds), 0.0)
}
}
impl From<u16> for Time {
fn from(seconds: u16) -> Self {
Time::new(u64::from(seconds), 0.0)
}
}
impl From<u32> for Time {
fn from(seconds: u32) -> Self {
Time::new(u64::from(seconds), 0.0)
}
}
impl From<u64> for Time {
fn from(seconds: u64) -> Self {
Time::new(seconds, 0.0)
}
}
impl From<f32> for Time {
fn from(seconds: f32) -> Self {
if seconds >= 0.0 {
Time::new(seconds.trunc() as u64, f64::from(seconds.fract()))
}
else {
Time::new(0, 0.0)
}
}
}
impl From<f64> for Time {
fn from(seconds: f64) -> Self {
if seconds >= 0.0 {
Time::new(seconds.trunc() as u64, seconds.fract())
}
else {
Time::new(0, 0.0)
}
}
}
impl From<std::time::Duration> for Time {
fn from(duration: std::time::Duration) -> Self {
Time::new(duration.as_secs(), f64::from(duration.subsec_nanos()) / 1_000_000_000.0)
}
}
impl From<Time> for std::time::Duration {
fn from(time: Time) -> Self {
std::time::Duration::new(time.seconds, (1_000_000_000.0 * time.frac) as u32)
}
}
/// A `TimeBase` is the conversion factor between time, expressed in seconds, and a `TimeStamp` or
/// `Duration`.
///
/// In other words, a `TimeBase` is the length in seconds of one tick of a `TimeStamp` or
/// `Duration`.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
pub struct TimeBase {
/// The numerator.
pub numer: u32,
/// The denominator.
pub denom: u32,
}
impl TimeBase {
/// Creates a new `TimeBase`. Panics if either the numerator or denominator is 0.
pub fn new(numer: u32, denom: u32) -> Self {
if numer == 0 || denom == 0 {
panic!("TimeBase cannot have 0 numerator or denominator");
}
TimeBase { numer, denom }
}
/// Accurately calculates a `Time` using the `TimeBase` and the provided `TimeStamp`. On
/// overflow, the seconds field of `Time` wraps.
pub fn calc_time(&self, ts: TimeStamp) -> Time {
assert!(self.numer > 0 && self.denom > 0, "TimeBase numerator or denominator are 0.");
// The dividend requires up-to 96-bits (32-bit timebase numerator * 64-bit timestamp).
let dividend = u128::from(ts) * u128::from(self.numer);
// For an accurate floating point division, both the dividend and divisor must have an
// accurate floating point representation. A 64-bit floating point value has a mantissa of
// 52 bits and can therefore accurately represent a 52-bit integer. The divisor (the
// denominator of the timebase) is limited to 32-bits. Therefore, if the dividend
// requires less than 52-bits, a straight-forward floating point division can be used to
// calculate the time.
if dividend < (1 << 52) {
let seconds = (dividend as f64) / f64::from(self.denom);
Time::new(seconds.trunc() as u64, seconds.fract())
}
else {
// If the dividend requires more than 52 bits, calculate the integer portion using
// integer arithmetic, then calculate the fractional part separately.
let quotient = dividend / u128::from(self.denom);
// The remainder is the fractional portion before being divided by the divisor (the
// denominator). The remainder will never equal or exceed the divisor (or else the
// fractional part would be >= 1.0), so the remainder must fit within a u32.
let rem = (dividend - (quotient * u128::from(self.denom))) as u32;
// Calculate the fractional portion. Since both the remainder and denominator are 32-bit
// integers now, 64-bit floating point division will provide enough accuracy.
let frac = f64::from(rem) / f64::from(self.denom);
Time::new(quotient as u64, frac)
}
}
/// Accurately calculates a `TimeStamp` from the given `Time` using the `TimeBase` as the
/// conversion factor. On overflow, the `TimeStamp` wraps.
pub fn calc_timestamp(&self, time: Time) -> TimeStamp {
assert!(self.numer > 0 && self.denom > 0, "TimeBase numerator or denominator are 0.");
assert!(time.frac >= 0.0 && time.frac < 1.0, "Invalid range for Time fractional part.");
// The dividing factor.
let k = 1.0 / f64::from(self.numer);
// Multiplying seconds by the denominator requires up-to 96-bits (32-bit timebase
// denominator * 64-bit timestamp).
let product = u128::from(time.seconds) * u128::from(self.denom);
// Like calc_time, a 64-bit floating-point value only has 52-bits of integer precision.
// If the product requires more than 52-bits, split the product into upper and lower parts
// and multiply by k separately, before adding back together.
let a = if product > (1 << 52) {
// Split the 96-bit product into 48-bit halves.
let u = ((product & !0xffff_ffff_ffff) >> 48) as u64;
let l = ((product & 0xffff_ffff_ffff) >> 0) as u64;
let uk = (u as f64) * k;
let ul = (l as f64) * k;
// Add the upper and lower halves.
((uk as u64) << 48).wrapping_add(ul as u64)
}
else {
((product as f64) * k) as u64
};
// The fractional portion can be calculate directly using floating point arithemtic.
let b = (k * f64::from(self.denom) * time.frac) as u64;
a.wrapping_add(b)
}
}
impl From<TimeBase> for f64 {
fn from(timebase: TimeBase) -> Self {
f64::from(timebase.numer) / f64::from(timebase.denom)
}
}
impl fmt::Display for TimeBase {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}/{}", self.numer, self.denom)
}
}
#[cfg(test)]
mod tests {
use super::{Time, TimeBase};
use std::time::Duration;
#[test]
fn verify_timebase() {
// Verify accuracy of timestamp -> time
let tb1 = TimeBase::new(1, 320);
assert_eq!(tb1.calc_time(0), Time::new(0, 0.0));
assert_eq!(tb1.calc_time(12_345), Time::new(38, 0.578125));
assert_eq!(tb1.calc_time(0x0f_ffff_ffff_ffff), Time::new(14_073_748_835_532, 0.796875));
assert_eq!(tb1.calc_time(0x10_0000_0000_0001), Time::new(14_073_748_835_532, 0.803125));
assert_eq!(tb1.calc_time(u64::MAX), Time::new(57_646_075_230_342_348, 0.796875));
// Verify overflow wraps seconds
let tb2 = TimeBase::new(320, 1);
assert_eq!(tb2.calc_time(u64::MAX), Time::new(18_446_744_073_709_551_296, 0.0));
// Verify accuracy of time -> timestamp
assert_eq!(tb1.calc_timestamp(Time::new(0, 0.0)), 0);
assert_eq!(tb1.calc_timestamp(Time::new(38, 0.578125)), 12_345);
assert_eq!(
tb1.calc_timestamp(Time::new(14_073_748_835_532, 0.796875)),
0x0f_ffff_ffff_ffff
);
assert_eq!(
tb1.calc_timestamp(Time::new(14_073_748_835_532, 0.803125)),
0x10_0000_0000_0001
);
assert_eq!(tb1.calc_timestamp(Time::new(57_646_075_230_342_348, 0.796875)), u64::MAX);
}
#[test]
fn verify_duration_to_time() {
// Verify accuracy of Duration -> Time
let dur1 = Duration::from_secs_f64(38.578125);
let time1 = Time::from(dur1);
assert_eq!(time1.seconds, 38);
assert_eq!(time1.frac, 0.578125);
}
#[test]
fn verify_time_to_duration() {
// Verify accuracy of Time -> Duration
let time1 = Time::new(38, 0.578125);
let dur1 = Duration::from(time1);
let seconds = dur1.as_secs_f64();
assert_eq!(seconds.trunc(), 38.0);
assert_eq!(seconds.fract(), 0.578125);
}
}