1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
use std::io::{Seek, SeekFrom};
use symphonia_core::codecs::CodecParameters;
use symphonia_core::errors::{seek_error, unsupported_error};
use symphonia_core::errors::{Result, SeekErrorKind};
use symphonia_core::formats::prelude::*;
use symphonia_core::io::*;
use symphonia_core::meta::{Metadata, MetadataLog};
use symphonia_core::probe::{Descriptor, Instantiate, QueryDescriptor};
use symphonia_core::support_format;
use log::{debug, error};
use crate::common::{
append_data_params, append_format_params, next_packet, ByteOrder, ChunksReader, PacketInfo,
};
mod chunks;
use chunks::*;
/// WAVE is actually a RIFF stream, with a "RIFF" ASCII stream marker.
const WAVE_STREAM_MARKER: [u8; 4] = *b"RIFF";
/// A possible RIFF form is "wave".
const WAVE_RIFF_FORM: [u8; 4] = *b"WAVE";
/// Waveform Audio File Format (WAV) format reader.
///
/// `WavReader` implements a demuxer for the WAVE container format.
pub struct WavReader {
reader: MediaSourceStream,
tracks: Vec<Track>,
cues: Vec<Cue>,
metadata: MetadataLog,
packet_info: PacketInfo,
data_start_pos: u64,
data_end_pos: u64,
}
impl QueryDescriptor for WavReader {
fn query() -> &'static [Descriptor] {
&[
// WAVE RIFF form
support_format!(
"wave",
"Waveform Audio File Format",
&["wav", "wave"],
&["audio/vnd.wave", "audio/x-wav", "audio/wav", "audio/wave"],
&[b"RIFF"]
),
]
}
fn score(_context: &[u8]) -> u8 {
255
}
}
impl FormatReader for WavReader {
fn try_new(mut source: MediaSourceStream, _options: &FormatOptions) -> Result<Self> {
// The RIFF marker should be present.
let marker = source.read_quad_bytes()?;
if marker != WAVE_STREAM_MARKER {
return unsupported_error("wav: missing riff stream marker");
}
// A Wave file is one large RIFF chunk, with the actual meta and audio data as sub-chunks.
// Therefore, the header was the chunk ID, and the next 4 bytes is the length of the RIFF
// chunk.
let riff_len = source.read_u32()?;
let riff_form = source.read_quad_bytes()?;
// The RIFF chunk contains WAVE data.
if riff_form != WAVE_RIFF_FORM {
error!("riff form is not wave ({})", String::from_utf8_lossy(&riff_form));
return unsupported_error("wav: riff form is not wave");
}
let mut riff_chunks =
ChunksReader::<RiffWaveChunks>::new(riff_len, ByteOrder::LittleEndian);
let mut codec_params = CodecParameters::new();
let mut metadata: MetadataLog = Default::default();
let mut packet_info = PacketInfo::without_blocks(0);
loop {
let chunk = riff_chunks.next(&mut source)?;
// The last chunk should always be a data chunk, if it is not, then the stream is
// unsupported.
if chunk.is_none() {
return unsupported_error("wav: missing data chunk");
}
match chunk.unwrap() {
RiffWaveChunks::Format(fmt) => {
let format = fmt.parse(&mut source)?;
// The Format chunk contains the block_align field and possible additional information
// to handle packetization and seeking.
packet_info = format.packet_info()?;
codec_params
.with_max_frames_per_packet(packet_info.get_max_frames_per_packet())
.with_frames_per_block(packet_info.frames_per_block);
// Append Format chunk fields to codec parameters.
append_format_params(
&mut codec_params,
&format.format_data,
format.sample_rate,
);
}
RiffWaveChunks::Fact(fct) => {
let fact = fct.parse(&mut source)?;
// Append Fact chunk fields to codec parameters.
append_fact_params(&mut codec_params, &fact);
}
RiffWaveChunks::List(lst) => {
let list = lst.parse(&mut source)?;
// Riff Lists can have many different forms, but WavReader only supports Info
// lists.
match &list.form {
b"INFO" => metadata.push(read_info_chunk(&mut source, list.len)?),
_ => list.skip(&mut source)?,
}
}
RiffWaveChunks::Data(dat) => {
let data = dat.parse(&mut source)?;
// Record the bounds of the data chunk.
let data_start_pos = source.pos();
let data_end_pos = data_start_pos + u64::from(data.len);
// Append Data chunk fields to codec parameters.
append_data_params(&mut codec_params, data.len as u64, &packet_info);
// Add a new track using the collected codec parameters.
return Ok(WavReader {
reader: source,
tracks: vec![Track::new(0, codec_params)],
cues: Vec::new(),
metadata,
packet_info,
data_start_pos,
data_end_pos,
});
}
}
}
}
fn next_packet(&mut self) -> Result<Packet> {
next_packet(
&mut self.reader,
&self.packet_info,
&self.tracks,
self.data_start_pos,
self.data_end_pos,
)
}
fn metadata(&mut self) -> Metadata<'_> {
self.metadata.metadata()
}
fn cues(&self) -> &[Cue] {
&self.cues
}
fn tracks(&self) -> &[Track] {
&self.tracks
}
fn seek(&mut self, _mode: SeekMode, to: SeekTo) -> Result<SeekedTo> {
if self.tracks.is_empty() || self.packet_info.is_empty() {
return seek_error(SeekErrorKind::Unseekable);
}
let params = &self.tracks[0].codec_params;
let ts = match to {
// Frame timestamp given.
SeekTo::TimeStamp { ts, .. } => ts,
// Time value given, calculate frame timestamp from sample rate.
SeekTo::Time { time, .. } => {
// Use the sample rate to calculate the frame timestamp. If sample rate is not
// known, the seek cannot be completed.
if let Some(sample_rate) = params.sample_rate {
TimeBase::new(1, sample_rate).calc_timestamp(time)
}
else {
return seek_error(SeekErrorKind::Unseekable);
}
}
};
// If the total number of frames in the track is known, verify the desired frame timestamp
// does not exceed it.
if let Some(n_frames) = params.n_frames {
if ts > n_frames {
return seek_error(SeekErrorKind::OutOfRange);
}
}
debug!("seeking to frame_ts={}", ts);
// WAVE is not internally packetized for PCM codecs. Packetization is simulated by trying to
// read a constant number of samples or blocks every call to next_packet. Therefore, a packet begins
// wherever the data stream is currently positioned. Since timestamps on packets should be
// determinstic, instead of seeking to the exact timestamp requested and starting the next
// packet there, seek to a packet boundary. In this way, packets will have have the same
// timestamps regardless if the stream was seeked or not.
let actual_ts = self.packet_info.get_actual_ts(ts);
// Calculate the absolute byte offset of the desired audio frame.
let seek_pos = self.data_start_pos + (actual_ts * self.packet_info.block_size);
// If the reader supports seeking we can seek directly to the frame's offset wherever it may
// be.
if self.reader.is_seekable() {
self.reader.seek(SeekFrom::Start(seek_pos))?;
}
// If the reader does not support seeking, we can only emulate forward seeks by consuming
// bytes. If the reader has to seek backwards, return an error.
else {
let current_pos = self.reader.pos();
if seek_pos >= current_pos {
self.reader.ignore_bytes(seek_pos - current_pos)?;
}
else {
return seek_error(SeekErrorKind::ForwardOnly);
}
}
debug!("seeked to packet_ts={} (delta={})", actual_ts, actual_ts as i64 - ts as i64);
Ok(SeekedTo { track_id: 0, actual_ts, required_ts: ts })
}
fn into_inner(self: Box<Self>) -> MediaSourceStream {
self.reader
}
}