1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
//! A trait that can provide the `Span` of the complete contents of a syntax //! tree node. //! //! *This module is available if Syn is built with both the `"parsing"` and //! `"printing"` features.* //! //! # Example //! //! Suppose in a procedural macro we have a [`Type`] that we want to assert //! implements the [`Sync`] trait. Maybe this is the type of one of the fields //! of a struct for which we are deriving a trait implementation, and we need to //! be able to pass a reference to one of those fields across threads. //! //! [`Type`]: ../enum.Type.html //! [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html //! //! If the field type does *not* implement `Sync` as required, we want the //! compiler to report an error pointing out exactly which type it was. //! //! The following macro code takes a variable `ty` of type `Type` and produces a //! static assertion that `Sync` is implemented for that type. //! //! ```edition2018 //! # extern crate proc_macro; //! # //! use proc_macro::TokenStream; //! use proc_macro2::Span; //! use quote::quote_spanned; //! use syn::Type; //! use syn::spanned::Spanned; //! //! # const IGNORE_TOKENS: &str = stringify! { //! #[proc_macro_derive(MyMacro)] //! # }; //! pub fn my_macro(input: TokenStream) -> TokenStream { //! # let ty = get_a_type(); //! /* ... */ //! //! let assert_sync = quote_spanned! {ty.span()=> //! struct _AssertSync where #ty: Sync; //! }; //! //! /* ... */ //! # input //! } //! # //! # fn get_a_type() -> Type { //! # unimplemented!() //! # } //! ``` //! //! By inserting this `assert_sync` fragment into the output code generated by //! our macro, the user's code will fail to compile if `ty` does not implement //! `Sync`. The errors they would see look like the following. //! //! ```text //! error[E0277]: the trait bound `*const i32: std::marker::Sync` is not satisfied //! --> src/main.rs:10:21 //! | //! 10 | bad_field: *const i32, //! | ^^^^^^^^^^ `*const i32` cannot be shared between threads safely //! ``` //! //! In this technique, using the `Type`'s span for the error message makes the //! error appear in the correct place underlining the right type. use proc_macro2::{Span, TokenStream}; use quote::ToTokens; /// A trait that can provide the `Span` of the complete contents of a syntax /// tree node. /// /// This trait is automatically implemented for all types that implement /// [`ToTokens`] from the `quote` crate. It is sealed and cannot be implemented /// outside of the Syn crate other than by implementing `ToTokens`. /// /// [`ToTokens`]: quote::ToTokens /// /// See the [module documentation] for an example. /// /// [module documentation]: self /// /// *This trait is available if Syn is built with both the `"parsing"` and /// `"printing"` features.* pub trait Spanned: private::Sealed { /// Returns a `Span` covering the complete contents of this syntax tree /// node, or [`Span::call_site()`] if this node is empty. /// /// [`Span::call_site()`]: proc_macro2::Span::call_site fn span(&self) -> Span; } mod private { use quote::ToTokens; pub trait Sealed {} impl<T: ToTokens> Sealed for T {} } impl<T> Spanned for T where T: ToTokens, { fn span(&self) -> Span { join_spans(self.into_token_stream()) } } fn join_spans(tokens: TokenStream) -> Span { let mut iter = tokens.into_iter().filter_map(|tt| { // FIXME: This shouldn't be required, since optimally spans should // never be invalid. This filter_map can probably be removed when // https://github.com/rust-lang/rust/issues/43081 is resolved. let span = tt.span(); let debug = format!("{:?}", span); if debug.ends_with("bytes(0..0)") { None } else { Some(span) } }); let mut joined = match iter.next() { Some(span) => span, None => return Span::call_site(), }; #[cfg(procmacro2_semver_exempt)] { for next in iter { if let Some(span) = joined.join(next) { joined = span; } } } #[cfg(not(procmacro2_semver_exempt))] { // We can't join spans without procmacro2_semver_exempt so just grab the // first one. joined = joined; } joined }