1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
#[cfg(feature = "async")]
pub use asynchronous::async_benchmark_fn;
use core::ptr;
use num_traits::ToPrimitive;
use rand::{rngs::SmallRng, Rng, SeedableRng};
use std::{
cmp::Ordering,
hint::black_box,
io, mem,
ops::{Deref, RangeInclusive},
str::Utf8Error,
time::Duration,
};
use thiserror::Error;
use timer::{ActiveTimer, Timer};
pub mod cli;
pub mod dylib;
#[cfg(target_os = "linux")]
pub mod linux;
#[derive(Debug, Error)]
pub enum Error {
#[error("No measurements given")]
NoMeasurements,
#[error("Invalid string pointer from FFI")]
InvalidFFIString(Utf8Error),
#[error("Spi::self() was already called")]
SpiSelfWasMoved,
#[error("Unable to load library symbol")]
UnableToLoadSymbol(#[source] libloading::Error),
#[error("Unknown sampler type. Available options are: flat and linear")]
UnknownSamplerType,
#[error("Invalid test name given")]
InvalidTestName,
#[error("IO Error")]
IOError(#[from] io::Error),
}
/// Registers benchmark in the system
///
/// Macros accepts a list of functions that produce any [`IntoBenchmarks`] type. All of the benchmarks
/// created by those functions are registered in the harness.
///
/// ## Example
/// ```rust
/// use std::time::Instant;
/// use tango_bench::{benchmark_fn, IntoBenchmarks, tango_benchmarks};
///
/// fn time_benchmarks() -> impl IntoBenchmarks {
/// [benchmark_fn("current_time", |b| b.iter(|| Instant::now()))]
/// }
///
/// tango_benchmarks!(time_benchmarks());
/// ```
#[macro_export]
macro_rules! tango_benchmarks {
($($func_expr:expr),+) => {
/// Type checking tango_init() function
const TANGO_INIT: $crate::dylib::ffi::InitFn = tango_init;
/// Exported function for initializing the benchmark harness
#[no_mangle]
unsafe extern "C" fn tango_init() {
let mut benchmarks = vec![];
$(benchmarks.extend($crate::IntoBenchmarks::into_benchmarks($func_expr));)*
$crate::dylib::__tango_init(benchmarks)
}
};
}
/// Main entrypoint for benchmarks
///
/// This macro generate `main()` function for the benchmark harness. Can be used in a form with providing
/// measurement settings:
/// ```rust
/// use tango_bench::{tango_main, tango_benchmarks, MeasurementSettings};
///
/// // Register benchmarks
/// tango_benchmarks!([]);
///
/// tango_main!(MeasurementSettings {
/// samples_per_haystack: 1000,
/// min_iterations_per_sample: 10,
/// max_iterations_per_sample: 10_000,
/// ..Default::default()
/// });
/// ```
#[macro_export]
macro_rules! tango_main {
($settings:expr) => {
fn main() -> $crate::cli::Result<std::process::ExitCode> {
// Initialize Tango for SelfVTable usage
unsafe { tango_init() };
$crate::cli::run($settings)
}
};
() => {
tango_main! {$crate::MeasurementSettings::default()}
};
}
pub struct BenchmarkParams {
pub seed: u64,
}
pub struct Bencher {
params: BenchmarkParams,
}
impl Deref for Bencher {
type Target = BenchmarkParams;
fn deref(&self) -> &Self::Target {
&self.params
}
}
impl Bencher {
pub fn iter<O: 'static, F: FnMut() -> O + 'static>(self, func: F) -> Box<dyn ErasedSampler> {
Box::new(Sampler(func))
}
}
struct Sampler<F>(F);
pub trait ErasedSampler {
/// Measures the performance if the function
///
/// Returns the cumulative execution time (all iterations) with nanoseconds precision,
/// but not necessarily accuracy. Usually this time is get by `clock_gettime()` call or some other
/// platform-specific call.
///
/// This method should use the same arguments for measuring the test function unless [`prepare_state()`]
/// method is called. Only then new set of input arguments should be generated. It is NOT allowed
/// to call this method without first calling [`prepare_state()`].
///
/// [`prepare_state()`]: Self::prepare_state()
fn measure(&mut self, iterations: usize) -> u64;
/// Estimates the number of iterations achievable within given time.
///
/// Time span is given in milliseconds (`time_ms`). Estimate can be an approximation and it is important
/// for implementation to be fast (in the order of 10 ms).
/// If possible the same input arguments should be used when building the estimate.
/// If the single call of a function is longer than provided timespan the implementation should return 0.
fn estimate_iterations(&mut self, time_ms: u32) -> usize {
let mut iters = 1;
let time_ns = Duration::from_millis(time_ms as u64).as_nanos() as u64;
for _ in 0..5 {
// Never believe short measurements because they are very unreliable. Pretending that
// measurement at least took 1us guarantees that we won't end up with an unreasonably large number
// of iterations
let time = self.measure(iters).max(1_000);
let time_per_iteration = (time / iters as u64).max(1);
let new_iters = (time_ns / time_per_iteration) as usize;
// Do early stop if new estimate has the same order of magnitude. It is good enough.
if new_iters < 2 * iters {
return new_iters;
}
iters = new_iters;
}
iters
}
}
impl<O, F: FnMut() -> O> ErasedSampler for Sampler<F> {
fn measure(&mut self, iterations: usize) -> u64 {
let start = ActiveTimer::start();
for _ in 0..iterations {
black_box((self.0)());
}
ActiveTimer::stop(start)
}
}
pub struct Benchmark {
name: String,
sampler_factory: Box<dyn SamplerFactory>,
}
pub fn benchmark_fn<F: FnMut(Bencher) -> Box<dyn ErasedSampler> + 'static>(
name: impl Into<String>,
sampler_factory: F,
) -> Benchmark {
let name = name.into();
assert!(!name.is_empty());
Benchmark {
name,
sampler_factory: Box::new(SyncSampleFactory(sampler_factory)),
}
}
pub trait SamplerFactory {
fn create_sampler(&mut self, params: BenchmarkParams) -> Box<dyn ErasedSampler>;
}
struct SyncSampleFactory<F>(F);
impl<F: FnMut(Bencher) -> Box<dyn ErasedSampler>> SamplerFactory for SyncSampleFactory<F> {
fn create_sampler(&mut self, params: BenchmarkParams) -> Box<dyn ErasedSampler> {
(self.0)(Bencher { params })
}
}
impl Benchmark {
/// Generates next haystack for the measurement
///
/// Calling this method should update internal haystack used for measurement.
/// Returns `true` if update happens, `false` if implementation doesn't support haystack generation.
/// Haystack/Needle distinction is described in [`Generator`] trait.
pub fn prepare_state(&mut self, seed: u64) -> Box<dyn ErasedSampler> {
self.sampler_factory
.create_sampler(BenchmarkParams { seed })
}
/// Name of the benchmark
pub fn name(&self) -> &str {
self.name.as_str()
}
}
/// Converts the implementing type into a vector of [`Benchmark`].
pub trait IntoBenchmarks {
fn into_benchmarks(self) -> Vec<Benchmark>;
}
impl<const N: usize> IntoBenchmarks for [Benchmark; N] {
fn into_benchmarks(self) -> Vec<Benchmark> {
self.into_iter().collect()
}
}
impl IntoBenchmarks for Vec<Benchmark> {
fn into_benchmarks(self) -> Vec<Benchmark> {
self
}
}
/// Describes basic settings for the benchmarking process
///
/// This structure is passed to [`cli::run()`].
///
/// Should be created only with overriding needed properties, like so:
/// ```rust
/// use tango_bench::MeasurementSettings;
///
/// let settings = MeasurementSettings {
/// min_iterations_per_sample: 1000,
/// ..Default::default()
/// };
/// ```
#[derive(Clone, Copy, Debug)]
pub struct MeasurementSettings {
pub filter_outliers: bool,
/// The number of samples per one generated haystack
pub samples_per_haystack: usize,
/// Minimum number of iterations in a sample for each of 2 tested functions
pub min_iterations_per_sample: usize,
/// The number of iterations in a sample for each of 2 tested functions
pub max_iterations_per_sample: usize,
pub sampler_type: SampleLengthKind,
/// If true scheduler performs warmup iterations before measuring function
pub warmup_enabled: bool,
/// Size of a CPU cache firewall in KBytes
///
/// If set, the scheduler will perform a dummy data read between samples generation to spoil the CPU cache
///
/// Cache firewall is a way to reduce the impact of the CPU cache on the benchmarking process. It tries
/// to minimize discrepancies in performance between two algorithms due to the CPU cache state.
pub cache_firewall: Option<usize>,
/// If true, scheduler will perform a yield of control back to the OS before taking each sample
///
/// Yielding control to the OS is a way to reduce the impact of OS scheduler on the benchmarking process.
pub yield_before_sample: bool,
/// If set, use alloca to allocate a random offset for the stack each sample.
/// This to reduce memory alignment effects on the benchmarking process.
///
/// May cause UB if the allocation is larger then the thread stack size.
pub randomize_stack: Option<usize>,
}
#[derive(Clone, Copy, Debug)]
pub enum SampleLengthKind {
Flat,
Linear,
Random,
}
/// Performs a dummy reads from memory to spoil given amount of CPU cache
///
/// Uses cache aligned data arrays to perform minimum amount of reads possible to spoil the cache
struct CacheFirewall {
cache_lines: Vec<CacheLine>,
}
impl CacheFirewall {
fn new(bytes: usize) -> Self {
let n = bytes / mem::size_of::<CacheLine>();
let cache_lines = vec![CacheLine::default(); n];
Self { cache_lines }
}
fn issue_read(&self) {
for line in &self.cache_lines {
// Because CacheLine is aligned on 64 bytes it is enough to read single element from the array
// to spoil the whole cache line
unsafe { ptr::read_volatile(&line.0[0]) };
}
}
}
#[repr(C)]
#[repr(align(64))]
#[derive(Default, Clone, Copy)]
struct CacheLine([u16; 32]);
pub const DEFAULT_SETTINGS: MeasurementSettings = MeasurementSettings {
filter_outliers: false,
samples_per_haystack: 1,
min_iterations_per_sample: 1,
max_iterations_per_sample: 5000,
sampler_type: SampleLengthKind::Random,
cache_firewall: None,
yield_before_sample: false,
warmup_enabled: true,
randomize_stack: None,
};
impl Default for MeasurementSettings {
fn default() -> Self {
DEFAULT_SETTINGS
}
}
/// Responsible for determining the number of iterations to run for each sample
///
/// Different sampler strategies can influence the results heavily. For example, if function is dependent heavily
/// on a memory subsystem, then it should be tested with different number of iterations to be representative
/// for different memory access patterns and cache states.
trait SampleLength {
/// Returns the number of iterations to run for the next sample
///
/// Accepts the number of iteration being run starting from 0 and cumulative time spent by both functions
fn next_sample_iterations(&mut self, iteration_no: usize, estimate: usize) -> usize;
}
/// Runs the same number of iterations for each sample
///
/// Estimates the number of iterations based on the number of iterations achieved in 10 ms and uses
/// this number as a base for the number of iterations for each sample.
struct FlatSampleLength {
min: usize,
max: usize,
}
impl FlatSampleLength {
fn new(settings: &MeasurementSettings) -> Self {
FlatSampleLength {
min: settings.min_iterations_per_sample.max(1),
max: settings.max_iterations_per_sample,
}
}
}
impl SampleLength for FlatSampleLength {
fn next_sample_iterations(&mut self, _iteration_no: usize, estimate: usize) -> usize {
estimate.clamp(self.min, self.max)
}
}
struct LinearSampleLength {
min: usize,
max: usize,
}
impl LinearSampleLength {
fn new(settings: &MeasurementSettings) -> Self {
Self {
min: settings.min_iterations_per_sample.max(1),
max: settings.max_iterations_per_sample,
}
}
}
impl SampleLength for LinearSampleLength {
fn next_sample_iterations(&mut self, iteration_no: usize, estimate: usize) -> usize {
let estimate = estimate.clamp(self.min, self.max);
(iteration_no % estimate) + 1
}
}
/// Sampler that randomly determines the number of iterations to run for each sample
///
/// This sampler uses a random number generator to decide the number of iterations for each sample.
struct RandomSampleLength {
rng: SmallRng,
min: usize,
max: usize,
}
impl RandomSampleLength {
pub fn new(settings: &MeasurementSettings, seed: u64) -> Self {
Self {
rng: SmallRng::seed_from_u64(seed),
min: settings.min_iterations_per_sample.max(1),
max: settings.max_iterations_per_sample,
}
}
}
impl SampleLength for RandomSampleLength {
fn next_sample_iterations(&mut self, _iteration_no: usize, estimate: usize) -> usize {
let estimate = estimate.clamp(self.min, self.max);
self.rng.gen_range(1..=estimate)
}
}
/// Calculates the result of the benchmarking run
///
/// Return None if no measurements were made
pub(crate) fn calculate_run_result<N: Into<String>>(
name: N,
baseline: &[u64],
candidate: &[u64],
iterations_per_sample: &[usize],
filter_outliers: bool,
) -> Option<RunResult> {
assert!(baseline.len() == candidate.len());
assert!(baseline.len() == iterations_per_sample.len());
let mut iterations_per_sample = iterations_per_sample.to_vec();
let mut diff = candidate
.iter()
.zip(baseline.iter())
// Calculating difference between candidate and baseline
.map(|(&c, &b)| (c as f64 - b as f64))
.zip(iterations_per_sample.iter())
// Normalizing difference to iterations count
.map(|(diff, &iters)| diff / iters as f64)
.collect::<Vec<_>>();
// need to save number of original samples to calculate number of outliers correctly
let n = diff.len();
// Normalizing measurements to iterations count
let mut baseline = baseline
.iter()
.zip(iterations_per_sample.iter())
.map(|(&v, &iters)| (v as f64) / (iters as f64))
.collect::<Vec<_>>();
let mut candidate = candidate
.iter()
.zip(iterations_per_sample.iter())
.map(|(&v, &iters)| (v as f64) / (iters as f64))
.collect::<Vec<_>>();
// Calculating measurements range. All measurements outside this interval considered outliers
let range = if filter_outliers {
iqr_variance_thresholds(diff.to_vec())
} else {
None
};
// Cleaning measurements from outliers if needed
if let Some(range) = range {
// We filtering outliers to build statistical Summary and the order of elements in arrays
// doesn't matter, therefore swap_remove() is used. But we need to make sure that all arrays
// has the same length
assert_eq!(diff.len(), baseline.len());
assert_eq!(diff.len(), candidate.len());
let mut i = 0;
while i < diff.len() {
if range.contains(&diff[i]) {
i += 1;
} else {
diff.swap_remove(i);
iterations_per_sample.swap_remove(i);
baseline.swap_remove(i);
candidate.swap_remove(i);
}
}
};
let diff_summary = Summary::from(&diff)?;
let baseline_summary = Summary::from(&baseline)?;
let candidate_summary = Summary::from(&candidate)?;
let diff_estimate = DiffEstimate::build(&baseline_summary, &diff_summary);
Some(RunResult {
baseline: baseline_summary,
candidate: candidate_summary,
diff: diff_summary,
name: name.into(),
diff_estimate,
outliers: n - diff_summary.n,
})
}
/// Contains the estimation of how much faster or slower is candidate function compared to baseline
pub(crate) struct DiffEstimate {
// Percentage of difference between candidate and baseline
//
// Negative value means that candidate is faster than baseline, positive - slower.
pct: f64,
// Is the difference statistically significant
significant: bool,
}
impl DiffEstimate {
/// Builds [`DiffEstimate`] from flat sampling
///
/// Flat sampling is a sampling where each measurement is normalized by the number of iterations.
/// This is needed to make measurements comparable between each other. Linear sampling is more
/// robust to outliers, but it is requiring more iterations.
///
/// It is assumed that baseline and candidate are already normalized by iterations count.
fn build(baseline: &Summary<f64>, diff: &Summary<f64>) -> Self {
let std_dev = diff.variance.sqrt();
let std_err = std_dev / (diff.n as f64).sqrt();
let z_score = diff.mean / std_err;
// significant result is far away from 0 and have more than 0.5% base/candidate difference
// z_score = 2.6 corresponds to 99% significance level
let significant = z_score.abs() >= 2.6
&& (diff.mean / baseline.mean).abs() > 0.005
&& diff.mean.abs() >= ActiveTimer::precision() as f64;
let pct = diff.mean / baseline.mean * 100.0;
Self { pct, significant }
}
}
/// Describes the results of a single benchmark run
pub(crate) struct RunResult {
/// name of a test
name: String,
/// statistical summary of baseline function measurements
baseline: Summary<f64>,
/// statistical summary of candidate function measurements
candidate: Summary<f64>,
/// individual measurements of a benchmark (candidate - baseline)
diff: Summary<f64>,
diff_estimate: DiffEstimate,
/// Numbers of detected and filtered outliers
outliers: usize,
}
/// Statistical summary for a given iterator of numbers.
///
/// Calculates all the information using single pass over the data. Mean and variance are calculated using
/// streaming algorithm described in _Art of Computer Programming, Vol 2, page 232_.
#[derive(Clone, Copy)]
pub struct Summary<T> {
pub n: usize,
pub min: T,
pub max: T,
pub mean: f64,
pub variance: f64,
}
impl<T: PartialOrd> Summary<T> {
pub fn from<'a, C>(values: C) -> Option<Self>
where
C: IntoIterator<Item = &'a T>,
T: ToPrimitive + Copy + Default + 'a,
{
Self::running(values.into_iter().copied()).last()
}
pub fn running<I>(iter: I) -> impl Iterator<Item = Summary<T>>
where
T: ToPrimitive + Copy + Default,
I: Iterator<Item = T>,
{
RunningSummary {
iter,
n: 0,
min: T::default(),
max: T::default(),
mean: 0.,
s: 0.,
}
}
}
struct RunningSummary<T, I> {
iter: I,
n: usize,
min: T,
max: T,
mean: f64,
s: f64,
}
impl<T, I> Iterator for RunningSummary<T, I>
where
T: Copy + PartialOrd,
I: Iterator<Item = T>,
T: ToPrimitive,
{
type Item = Summary<T>;
fn next(&mut self) -> Option<Self::Item> {
let value = self.iter.next()?;
let fvalue = value.to_f64().expect("f64 overflow detected");
if self.n == 0 {
self.min = value;
self.max = value;
}
if let Some(Ordering::Less) = value.partial_cmp(&self.min) {
self.min = value;
}
if let Some(Ordering::Greater) = value.partial_cmp(&self.max) {
self.max = value;
}
self.n += 1;
let mean_p = self.mean;
self.mean += (fvalue - self.mean) / self.n as f64;
self.s += (fvalue - mean_p) * (fvalue - self.mean);
let variance = if self.n > 1 {
self.s / (self.n - 1) as f64
} else {
0.
};
Some(Summary {
n: self.n,
min: self.min,
max: self.max,
mean: self.mean,
variance,
})
}
}
/// Outlier detection algorithm based on interquartile range
///
/// Observations that are 1.5 IQR away from the corresponding quartile are consideted as outliers
/// as described in original Tukey's paper.
pub fn iqr_variance_thresholds(mut input: Vec<f64>) -> Option<RangeInclusive<f64>> {
const MINIMUM_IQR: f64 = 1.;
input.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal));
let (q1, q3) = (input.len() / 4, input.len() * 3 / 4 - 1);
if q1 >= q3 || q3 >= input.len() {
return None;
}
// In case q1 and q3 are equal, we need to make sure that IQR is not 0
// In the future it would be nice to measure system timer precision empirically.
let iqr = (input[q3] - input[q1]).max(MINIMUM_IQR);
let low_threshold = input[q1] - iqr * 1.5;
let high_threshold = input[q3] + iqr * 1.5;
// Calculating the indices of the thresholds in an dataset
let low_threshold_idx =
match input[0..q1].binary_search_by(|probe| probe.total_cmp(&low_threshold)) {
Ok(idx) => idx,
Err(idx) => idx,
};
let high_threshold_idx =
match input[q3..].binary_search_by(|probe| probe.total_cmp(&high_threshold)) {
Ok(idx) => idx,
Err(idx) => idx,
};
if low_threshold_idx == 0 || high_threshold_idx >= input.len() {
return None;
}
// Calculating the equal number of observations which should be removed from each "side" of observations
let outliers_cnt = low_threshold_idx.min(input.len() - high_threshold_idx);
Some(input[outliers_cnt]..=(input[input.len() - outliers_cnt - 1]))
}
mod timer {
use std::time::Instant;
#[cfg(all(feature = "hw-timer", target_arch = "x86_64"))]
pub(super) type ActiveTimer = x86::RdtscpTimer;
#[cfg(not(all(feature = "hw-timer", target_arch = "x86_64")))]
pub(super) type ActiveTimer = PlatformTimer;
pub(super) trait Timer<T> {
fn start() -> T;
fn stop(start_time: T) -> u64;
/// Timer precision in nanoseconds
///
/// The results less than the precision of a timer are considered not significant
fn precision() -> u64 {
1
}
}
pub(super) struct PlatformTimer;
impl Timer<Instant> for PlatformTimer {
#[inline]
fn start() -> Instant {
Instant::now()
}
#[inline]
fn stop(start_time: Instant) -> u64 {
start_time.elapsed().as_nanos() as u64
}
}
#[cfg(all(feature = "hw-timer", target_arch = "x86_64"))]
pub(super) mod x86 {
use super::Timer;
use std::arch::x86_64::{__rdtscp, _mm_mfence};
pub struct RdtscpTimer;
impl Timer<u64> for RdtscpTimer {
#[inline]
fn start() -> u64 {
unsafe {
_mm_mfence();
__rdtscp(&mut 0)
}
}
#[inline]
fn stop(start: u64) -> u64 {
unsafe {
let end = __rdtscp(&mut 0);
_mm_mfence();
end - start
}
}
}
}
}
#[cfg(feature = "async")]
pub mod asynchronous {
use super::{Benchmark, BenchmarkParams, ErasedSampler, Sampler, SamplerFactory};
use std::{future::Future, ops::Deref};
pub fn async_benchmark_fn<R, F>(
name: impl Into<String>,
runtime: R,
sampler_factory: F,
) -> Benchmark
where
R: AsyncRuntime + 'static,
F: FnMut(AsyncBencher<R>) -> Box<dyn ErasedSampler> + 'static,
{
let name = name.into();
assert!(!name.is_empty());
Benchmark {
name,
sampler_factory: Box::new(AsyncSampleFactory(sampler_factory, runtime)),
}
}
pub struct AsyncSampleFactory<F, R>(pub F, pub R);
impl<R: AsyncRuntime, F: FnMut(AsyncBencher<R>) -> Box<dyn ErasedSampler>> SamplerFactory
for AsyncSampleFactory<F, R>
{
fn create_sampler(&mut self, params: BenchmarkParams) -> Box<dyn ErasedSampler> {
(self.0)(AsyncBencher {
params,
runtime: self.1,
})
}
}
pub struct AsyncBencher<R> {
params: BenchmarkParams,
runtime: R,
}
impl<R: AsyncRuntime + 'static> AsyncBencher<R> {
pub fn iter<O, Fut, F>(self, func: F) -> Box<dyn ErasedSampler>
where
O: 'static,
Fut: Future<Output = O>,
F: FnMut() -> Fut + Copy + 'static,
{
Box::new(Sampler(move || self.runtime.block_on(func)))
}
}
impl<R> Deref for AsyncBencher<R> {
type Target = BenchmarkParams;
fn deref(&self) -> &Self::Target {
&self.params
}
}
pub trait AsyncRuntime: Copy {
fn block_on<O, Fut: Future<Output = O>, F: FnMut() -> Fut>(&self, f: F) -> O;
}
#[cfg(feature = "async-tokio")]
pub mod tokio {
use super::*;
use ::tokio::runtime::Builder;
#[derive(Copy, Clone)]
pub struct TokioRuntime;
impl AsyncRuntime for TokioRuntime {
fn block_on<O, Fut: Future<Output = O>, F: FnMut() -> Fut>(&self, mut f: F) -> O {
let runtime = Builder::new_current_thread().build().unwrap();
runtime.block_on(f())
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use rand::{rngs::SmallRng, Rng, RngCore, SeedableRng};
use std::{
iter::Sum,
ops::{Add, Div},
thread,
time::Duration,
};
#[test]
fn check_iqr_variance_thresholds() {
let mut rng = SmallRng::from_entropy();
// Generate 20 random values in range [-50, 50]
// and add 10 outliers in each of two ranges [-1000, -200] and [200, 1000]
// This way IQR is no more than 100 and thresholds should be within [-50, 50] range
let mut values = vec![];
values.extend((0..20).map(|_| rng.gen_range(-50.0..=50.)));
values.extend((0..10).map(|_| rng.gen_range(-1000.0..=-200.0)));
values.extend((0..10).map(|_| rng.gen_range(200.0..=1000.0)));
let thresholds = iqr_variance_thresholds(values).unwrap();
assert!(
-50. <= *thresholds.start() && *thresholds.end() <= 50.,
"Invalid range: {:?}",
thresholds
);
}
/// This tests checks that the algorithm is stable in case of zero difference between 25 and 75 percentiles
#[test]
fn check_outliers_zero_iqr() {
let mut rng = SmallRng::from_entropy();
let mut values = vec![];
values.extend(std::iter::repeat(0.).take(20));
values.extend((0..10).map(|_| rng.gen_range(-1000.0..=-200.0)));
values.extend((0..10).map(|_| rng.gen_range(200.0..=1000.0)));
let thresholds = iqr_variance_thresholds(values).unwrap();
assert!(
0. <= *thresholds.start() && *thresholds.end() <= 0.,
"Invalid range: {:?}",
thresholds
);
}
#[test]
fn check_summary_statistics() {
for i in 2u32..100 {
let range = 1..=i;
let values = range.collect::<Vec<_>>();
let stat = Summary::from(&values).unwrap();
let sum = (i * (i + 1)) as f64 / 2.;
let expected_mean = sum / i as f64;
let expected_variance = naive_variance(values.as_slice());
assert_eq!(stat.min, 1);
assert_eq!(stat.n, i as usize);
assert_eq!(stat.max, i);
assert!(
(stat.mean - expected_mean).abs() < 1e-5,
"Expected close to: {}, given: {}",
expected_mean,
stat.mean
);
assert!(
(stat.variance - expected_variance).abs() < 1e-5,
"Expected close to: {}, given: {}",
expected_variance,
stat.variance
);
}
}
#[test]
fn check_summary_statistics_types() {
Summary::from(<&[i64]>::default());
Summary::from(<&[u32]>::default());
Summary::from(&Vec::<i64>::default());
}
#[test]
fn check_naive_variance() {
assert_eq!(naive_variance(&[1, 2, 3]), 1.0);
assert_eq!(naive_variance(&[1, 2, 3, 4, 5]), 2.5);
}
#[test]
fn check_running_variance() {
let input = [1i64, 2, 3, 4, 5, 6, 7];
let variances = Summary::running(input.into_iter())
.map(|s| s.variance)
.collect::<Vec<_>>();
let expected = &[0., 0.5, 1., 1.6666, 2.5, 3.5, 4.6666];
assert_eq!(variances.len(), expected.len());
for (value, expected_value) in variances.iter().zip(expected) {
assert!(
(value - expected_value).abs() < 1e-3,
"Expected close to: {}, given: {}",
expected_value,
value
);
}
}
#[test]
fn check_running_variance_stress_test() {
let rng = RngIterator(SmallRng::seed_from_u64(0)).map(|i| i as i64);
let mut variances = Summary::running(rng).map(|s| s.variance);
assert!(variances.nth(1_000_000).unwrap() > 0.)
}
/// Basic check of measurement code
///
/// This test is quite brittle. There is no guarantee the OS scheduler will wake up the thread
/// soon enough to meet measurement target. We try to mitigate this possibility using several strategies:
/// 1. repeating test several times and taking median as target measurement.
/// 2. using more liberal checking condition (allowing 1 order of magnitude error in measurement)
#[test]
fn check_measure_time() {
let expected_delay = 1;
let mut target = benchmark_fn("foo", move |b| {
b.iter(move || thread::sleep(Duration::from_millis(expected_delay)))
});
target.prepare_state(0);
let median = median_execution_time(&mut target, 10).as_millis() as u64;
assert!(median < expected_delay * 10);
}
struct RngIterator<T>(T);
impl<T: RngCore> Iterator for RngIterator<T> {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
Some(self.0.next_u32())
}
}
fn naive_variance<T>(values: &[T]) -> f64
where
T: Sum + Copy,
f64: From<T>,
{
let n = values.len() as f64;
let mean = f64::from(values.iter().copied().sum::<T>()) / n;
let mut sum_of_squares = 0.;
for value in values.iter().copied() {
sum_of_squares += (f64::from(value) - mean).powi(2);
}
sum_of_squares / (n - 1.)
}
fn median_execution_time(target: &mut Benchmark, iterations: u32) -> Duration {
assert!(iterations >= 1);
let mut state = target.prepare_state(0);
let measures: Vec<_> = (0..iterations).map(|_| state.measure(1)).collect();
let time = median(measures).max(1);
Duration::from_nanos(time)
}
fn median<T: Copy + Ord + Add<Output = T> + Div<Output = T>>(mut measures: Vec<T>) -> T {
assert!(!measures.is_empty(), "Vec is empty");
measures.sort_unstable();
measures[measures.len() / 2]
}
}