1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#![allow(clippy::len_without_is_empty)]

use std::ops::Deref;

pub use byteorder::LittleEndian as Endianness;

mod bitset;
mod serialize;
mod vint;
mod writer;

pub use bitset::*;
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
pub use vint::{read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint, VInt};
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};

/// Has length trait
pub trait HasLen {
    /// Return length
    fn len(&self) -> usize;

    /// Returns true iff empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

impl<T: Deref<Target = [u8]>> HasLen for T {
    fn len(&self) -> usize {
        self.deref().len()
    }
}

const HIGHEST_BIT: u64 = 1 << 63;

/// Maps a `i64` to `u64`
///
/// For simplicity, tantivy internally handles `i64` as `u64`.
/// The mapping is defined by this function.
///
/// Maps `i64` to `u64` so that
/// `-2^63 .. 2^63-1` is mapped
///     to
/// `0 .. 2^64-1`
/// in that order.
///
/// This is more suited than simply casting (`val as u64`)
/// because of bitpacking.
///
/// Imagine a list of `i64` ranging from -10 to 10.
/// When casting negative values, the negative values are projected
/// to values over 2^63, and all values end up requiring 64 bits.
///
/// # See also
/// The [reverse mapping is `u64_to_i64`](./fn.u64_to_i64.html).
#[inline]
pub fn i64_to_u64(val: i64) -> u64 {
    (val as u64) ^ HIGHEST_BIT
}

/// Reverse the mapping given by [`i64_to_u64`](./fn.i64_to_u64.html).
#[inline]
pub fn u64_to_i64(val: u64) -> i64 {
    (val ^ HIGHEST_BIT) as i64
}

/// Maps a `f64` to `u64`
///
/// For simplicity, tantivy internally handles `f64` as `u64`.
/// The mapping is defined by this function.
///
/// Maps `f64` to `u64` in a monotonic manner, so that bytes lexical order is preserved.
///
/// This is more suited than simply casting (`val as u64`)
/// which would truncate the result
///
/// # Reference
///
/// Daniel Lemire's [blog post](https://lemire.me/blog/2020/12/14/converting-floating-point-numbers-to-integers-while-preserving-order/)
/// explains the mapping in a clear manner.
///
/// # See also
/// The [reverse mapping is `u64_to_f64`](./fn.u64_to_f64.html).
#[inline]
pub fn f64_to_u64(val: f64) -> u64 {
    let bits = val.to_bits();
    if val.is_sign_positive() {
        bits ^ HIGHEST_BIT
    } else {
        !bits
    }
}

/// Reverse the mapping given by [`i64_to_u64`](./fn.i64_to_u64.html).
#[inline]
pub fn u64_to_f64(val: u64) -> f64 {
    f64::from_bits(if val & HIGHEST_BIT != 0 {
        val ^ HIGHEST_BIT
    } else {
        !val
    })
}

#[cfg(test)]
pub mod test {

    use std::f64;

    use proptest::prelude::*;

    use super::{f64_to_u64, i64_to_u64, u64_to_f64, u64_to_i64, BinarySerializable, FixedSize};

    fn test_i64_converter_helper(val: i64) {
        assert_eq!(u64_to_i64(i64_to_u64(val)), val);
    }

    fn test_f64_converter_helper(val: f64) {
        assert_eq!(u64_to_f64(f64_to_u64(val)), val);
    }

    pub fn fixed_size_test<O: BinarySerializable + FixedSize + Default>() {
        let mut buffer = Vec::new();
        O::default().serialize(&mut buffer).unwrap();
        assert_eq!(buffer.len(), O::SIZE_IN_BYTES);
    }

    proptest! {
        #[test]
        fn test_f64_converter_monotonicity_proptest((left, right) in (proptest::num::f64::NORMAL, proptest::num::f64::NORMAL)) {
            let left_u64 = f64_to_u64(left);
            let right_u64 = f64_to_u64(right);
            assert_eq!(left_u64 < right_u64,  left < right);
        }
    }

    #[test]
    fn test_i64_converter() {
        assert_eq!(i64_to_u64(i64::min_value()), u64::min_value());
        assert_eq!(i64_to_u64(i64::max_value()), u64::max_value());
        test_i64_converter_helper(0i64);
        test_i64_converter_helper(i64::min_value());
        test_i64_converter_helper(i64::max_value());
        for i in -1000i64..1000i64 {
            test_i64_converter_helper(i);
        }
    }

    #[test]
    fn test_f64_converter() {
        test_f64_converter_helper(f64::INFINITY);
        test_f64_converter_helper(f64::NEG_INFINITY);
        test_f64_converter_helper(0.0);
        test_f64_converter_helper(-0.0);
        test_f64_converter_helper(1.0);
        test_f64_converter_helper(-1.0);
    }

    #[test]
    fn test_f64_order() {
        assert!(!(f64_to_u64(f64::NEG_INFINITY)..f64_to_u64(f64::INFINITY))
            .contains(&f64_to_u64(f64::NAN))); // nan is not a number
        assert!(f64_to_u64(1.5) > f64_to_u64(1.0)); // same exponent, different mantissa
        assert!(f64_to_u64(2.0) > f64_to_u64(1.0)); // same mantissa, different exponent
        assert!(f64_to_u64(2.0) > f64_to_u64(1.5)); // different exponent and mantissa
        assert!(f64_to_u64(1.0) > f64_to_u64(-1.0)); // pos > neg
        assert!(f64_to_u64(-1.5) < f64_to_u64(-1.0));
        assert!(f64_to_u64(-2.0) < f64_to_u64(1.0));
        assert!(f64_to_u64(-2.0) < f64_to_u64(-1.5));
    }
}