1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
/*!
Operations on raw finite state transducers.

This sub-module exposes the guts of a finite state transducer. Many parts of
it, such as construction and traversal, are mirrored in the `set` and `map`
sub-modules. Other parts of it, such as direct access to nodes and transitions
in the transducer, do not have any analog.

# Overview of types

`Fst` is a read only interface to pre-constructed finite state transducers.
`Node` is a read only interface to a single node in a transducer. `Builder` is
used to create new finite state transducers. (Once a transducer is created, it
can never be modified.) `Stream` is a stream of all inputs and outputs in a
transducer. `StreamBuilder` builds range queries. `OpBuilder` collects streams
and executes set operations like `union` or `intersection` on them with the
option of specifying a merge strategy for output values.

Most of the rest of the types are streams from set operations.
*/
use std::fmt;
use std::ops::Deref;
use std::{cmp, mem};

use byteorder::{LittleEndian, ReadBytesExt};

use crate::automaton::{AlwaysMatch, Automaton};
use crate::error::Result;
use crate::stream::{IntoStreamer, Streamer};

pub use self::build::Builder;
pub use self::error::Error;
use self::node::node_new;
pub use self::node::{Node, Transitions};
pub use self::ops::{
    Difference, IndexedValue, Intersection, OpBuilder, SymmetricDifference, Union,
};

mod build;
mod common_inputs;
mod counting_writer;
mod error;
mod node;
mod ops;
mod pack;
mod registry;
mod registry_minimal;
#[cfg(test)]
mod tests;

/// The API version of this crate.
///
/// This version number is written to every finite state transducer created by
/// this crate. When a finite state transducer is read, its version number is
/// checked against this value.
///
/// Currently, any version mismatch results in an error. Fixing this requires
/// regenerating the finite state transducer or switching to a version of this
/// crate that is compatible with the serialized transducer. This particular
/// behavior may be relaxed in future versions.
pub const VERSION: u64 = 2;

/// A sentinel value used to indicate an empty final state.
const EMPTY_ADDRESS: CompiledAddr = 0;

/// A sentinel value used to indicate an invalid state.
///
/// This is never the address of a node in a serialized transducer.
const NONE_ADDRESS: CompiledAddr = 1;

/// Default capacity for the key buffer of a stream.
const KEY_BUFFER_CAPACITY: usize = 128;

/// FstType is a convention used to indicate the type of the underlying
/// transducer.
///
/// This crate reserves the range 0-255 (inclusive) but currently leaves the
/// meaning of 0-255 unspecified.
pub type FstType = u64;

/// CompiledAddr is the type used to address nodes in a finite state
/// transducer.
///
/// It is most useful as a pointer to nodes. It can be used in the `Fst::node`
/// method to resolve the pointer.
pub type CompiledAddr = usize;

/// An acyclic deterministic finite state transducer.
///
/// # How does it work?
///
/// The short answer: it's just like a prefix trie, which compresses keys
/// based only on their prefixes, except that a automaton/transducer also
/// compresses suffixes.
///
/// The longer answer is that keys in an automaton are stored only in the
/// transitions from one state to another. A key can be acquired by tracing
/// a path from the root of the automaton to any match state. The inputs along
/// each transition are concatenated. Once a match state is reached, the
/// concatenation of inputs up until that point corresponds to a single key.
///
/// But why is it called a transducer instead of an automaton? A finite state
/// transducer is just like a finite state automaton, except that it has output
/// transitions in addition to input transitions. Namely, the value associated
/// with any particular key is determined by summing the outputs along every
/// input transition that leads to the key's corresponding match state.
///
/// This is best demonstrated with a couple images. First, let's ignore the
/// "transducer" aspect and focus on a plain automaton.
///
/// Consider that your keys are abbreviations of some of the months in the
/// Gregorian calendar:
///
/// ```ignore
/// jan
/// feb
/// mar
/// apr
/// may
/// jun
/// jul
/// ```
///
/// The corresponding automaton that stores all of these as keys looks like
/// this:
///
/// ![finite state automaton](http://burntsushi.net/stuff/months-set.png)
///
/// Notice here how the prefix and suffix of `jan` and `jun` are shared.
/// Similarly, the prefixes of `jun` and `jul` are shared and the prefixes
/// of `mar` and `may` are shared.
///
/// All of the keys from this automaton can be enumerated in lexicographic
/// order by following every transition from each node in lexicographic
/// order. Since it is acyclic, the procedure will terminate.
///
/// A key can be found by tracing it through the transitions in the automaton.
/// For example, the key `aug` is known not to be in the automaton by only
/// visiting the root state (because there is no `a` transition). For another
/// example, the key `jax` is known not to be in the set only after moving
/// through the transitions for `j` and `a`. Namely, after those transitions
/// are followed, there are no transitions for `x`.
///
/// Notice here that looking up a key is proportional the length of the key
/// itself. Namely, lookup time is not affected by the number of keys in the
/// automaton!
///
/// Additionally, notice that the automaton exploits the fact that many keys
/// share common prefixes and suffixes. For example, `jun` and `jul` are
/// represented with no more states than would be required to represent either
/// one on its own. Instead, the only change is a single extra transition. This
/// is a form of compression and is key to how the automatons produced by this
/// crate are so small.
///
/// Let's move on to finite state transducers. Consider the same set of keys
/// as above, but let's assign their numeric month values:
///
/// ```ignore
/// jan,1
/// feb,2
/// mar,3
/// apr,4
/// may,5
/// jun,6
/// jul,7
/// ```
///
/// The corresponding transducer looks very similar to the automaton above,
/// except outputs have been added to some of the transitions:
///
/// ![finite state transducer](http://burntsushi.net/stuff/months-map.png)
///
/// All of the operations with a transducer are the same as described above
/// for automatons. Additionally, the same compression techniques are used:
/// common prefixes and suffixes in keys are exploited.
///
/// The key difference is that some transitions have been given an output.
/// As one follows input transitions, one must sum the outputs as they
/// are seen. (A transition with no output represents the additive identity,
/// or `0` in this case.) For example, when looking up `feb`, the transition
/// `f` has output `2`, the transition `e` has output `0`, and the transition
/// `b` also has output `0`. The sum of these is `2`, which is exactly the
/// value we associated with `feb`.
///
/// For another more interesting example, consider `jul`. The `j` transition
/// has output `1`, the `u` transition has output `5` and the `l` transition
/// has output `1`. Summing these together gets us `7`, which is again the
/// correct value associated with `jul`. Notice that if we instead looked up
/// the `jun` key, then the `n` transition would be followed instead of the
/// `l` transition, which has no output. Therefore, the `jun` key equals
/// `1+5+0=6`.
///
/// The trick to transducers is that there exists a unique path through the
/// transducer for every key, and its outputs are stored appropriately along
/// this path such that the correct value is returned when they are all summed
/// together. This process also enables the data that makes up each value to be
/// shared across many values in the transducer in exactly the same way that
/// keys are shared. This is yet another form of compression!
///
/// # Bonus: a billion strings
///
/// The amount of compression one can get from automata can be absolutely
/// ridiuclous. Consider the particular case of storing all billion strings
/// in the range `0000000001-1000000000`, e.g.,
///
/// ```ignore
/// 0000000001
/// 0000000002
/// ...
/// 0000000100
/// 0000000101
/// ...
/// 0999999999
/// 1000000000
/// ```
///
/// The corresponding automaton looks like this:
///
/// ![finite state automaton - one billion strings]
/// (http://burntsushi.net/stuff/one-billion.png)
///
/// Indeed, the on disk size of this automaton is a mere **251 bytes**.
///
/// Of course, this is a bit of a pathological best case, but it does serve
/// to show how good compression can be in the optimal case.
///
/// Also, check out the
/// [corresponding transducer](http://burntsushi.net/stuff/one-billion-map.svg)
/// that maps each string to its integer value. It's a bit bigger, but still
/// only takes up **896 bytes** of space on disk. This demonstrates that
/// output values are also compressible.
///
/// # Does this crate produce minimal transducers?
///
/// For any non-trivial sized set of keys, it is unlikely that this crate will
/// produce a minimal transducer. As far as this author knows, guaranteeing a
/// minimal transducer requires working memory proportional to the number of
/// states. This can be quite costly and is anathema to the main design goal of
/// this crate: provide the ability to work with gigantic sets of strings with
/// constant memory overhead.
///
/// Instead, construction of a finite state transducer uses a cache of
/// states. More frequently used states are cached and reused, which provides
/// reasonably good compression ratios. (No comprehensive benchmarks exist to
/// back up this claim.)
///
/// It is possible that this crate may expose a way to guarantee minimal
/// construction of transducers at the expense of exorbitant memory
/// requirements.
///
/// # Bibliography
///
/// I initially got the idea to use finite state tranducers to represent
/// ordered sets/maps from
/// [Michael
/// McCandless'](http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html)
/// work on incorporating transducers in Lucene.
///
/// However, my work would also not have been possible without the hard work
/// of many academics, especially
/// [Jan Daciuk](http://galaxy.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/).
///
/// * [Incremental construction of minimal acyclic finite-state automata](http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601)
///   (Section 3 provides a decent overview of the algorithm used to construct
///   transducers in this crate, assuming all outputs are `0`.)
/// * [Direct Construction of Minimal Acyclic Subsequential Transducers](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.3698&rep=rep1&type=pdf)
///   (The whole thing. The proof is dense but illuminating. The algorithm at
///   the end is the money shot, namely, it incorporates output values.)
/// * [Experiments with Automata Compression](http://www.researchgate.net/profile/Jii_Dvorsky/publication/221568039_Word_Random_Access_Compression/links/0c96052c095630d5b3000000.pdf#page=116), [Smaller Representation of Finite State Automata](http://www.cs.put.poznan.pl/dweiss/site/publications/download/fsacomp.pdf)
///   (various compression techniques for representing states/transitions)
/// * [Jan Daciuk's dissertation](http://www.pg.gda.pl/~jandac/thesis.ps.gz)
///   (excellent for in depth overview)
/// * [Comparison of Construction Algorithms for Minimal, Acyclic, Deterministic, Finite-State Automata from Sets of Strings](http://www.cs.mun.ca/~harold/Courses/Old/CS4750/Diary/q3p2qx4lv71m5vew.pdf)
///   (excellent for surface level overview)
pub struct Fst<Data = Vec<u8>> {
    meta: FstMeta,
    data: Data,
}

struct FstMeta {
    version: u64,
    root_addr: CompiledAddr,
    ty: FstType,
    len: usize,
}

impl FstMeta {
    #[inline(always)]
    fn root<'f>(&self, data: &'f [u8]) -> Node<'f> {
        self.node(self.root_addr, data)
    }

    #[inline(always)]
    fn node<'f>(&self, addr: CompiledAddr, data: &'f [u8]) -> Node<'f> {
        node_new(self.version, addr, data)
    }

    fn empty_final_output(&self, data: &[u8]) -> Option<Output> {
        let root = self.root(data);
        if root.is_final() {
            Some(root.final_output())
        } else {
            None
        }
    }
}

impl<Data: Deref<Target = [u8]>> Fst<Data> {
    /// Open a `Fst` from a given data.
    pub fn new(data: Data) -> Result<Fst<Data>> {
        if data.len() < 32 {
            return Err(Error::Format.into());
        }
        // The read_u64 unwraps below are OK because they can never fail.
        // They can only fail when there is an IO error or if there is an
        // unexpected EOF. However, we are reading from a byte slice (no
        // IO errors possible) and we've confirmed the byte slice is at least
        // N bytes (no unexpected EOF).
        let version = (&*data).read_u64::<LittleEndian>().unwrap();
        if version == 0 || version > VERSION {
            return Err(Error::Version {
                expected: VERSION,
                got: version,
            }
            .into());
        }
        let ty = (&data[8..]).read_u64::<LittleEndian>().unwrap();
        let root_addr = {
            let mut last = &data[data.len() - 8..];
            u64_to_usize(last.read_u64::<LittleEndian>().unwrap())
        };
        let len = {
            let mut last2 = &data[data.len() - 16..];
            u64_to_usize(last2.read_u64::<LittleEndian>().unwrap())
        };
        // The root node is always the last node written, so its address should
        // be near the end. After the root node is written, we still have to
        // write the root *address* and the number of keys in the FST.
        // That's 16 bytes. The extra byte comes from the fact that the root
        // address points to the last byte in the root node, rather than the
        // byte immediately following the root node.
        //
        // If this check passes, it is still possible that the FST is invalid
        // but probably unlikely. If this check reports a false positive, then
        // the program will probably panic. In the worst case, the FST will
        // operate but be subtly wrong. (This would require the bytes to be in
        // a format expected by an FST, which is incredibly unlikely.)
        //
        // The special check for EMPTY_ADDRESS is needed since an empty FST
        // has a root node that is empty and final, which means it has the
        // special address `0`. In that case, the FST is the smallest it can
        // be: the version, type, root address and number of nodes. That's
        // 32 bytes (8 byte u64 each).
        //
        // This is essentially our own little checksum.
        if (root_addr == EMPTY_ADDRESS && data.len() != 32) && root_addr + 17 != data.len() {
            return Err(Error::Format.into());
        }
        Ok(Fst {
            data,
            meta: FstMeta {
                version,
                root_addr,
                ty,
                len,
            },
        })
    }

    /// Retrieves the value associated with a key.
    ///
    /// If the key does not exist, then `None` is returned.
    #[inline(never)]
    pub fn get<B: AsRef<[u8]>>(&self, key: B) -> Option<Output> {
        let mut node = self.root();
        let mut out = Output::zero();
        for &b in key.as_ref() {
            node = match node.find_input(b) {
                None => return None,
                Some(i) => {
                    let t = node.transition(i);
                    out = out.cat(t.out);
                    self.node(t.addr)
                }
            }
        }
        if !node.is_final() {
            None
        } else {
            Some(out.cat(node.final_output()))
        }
    }

    /// Returns true if and only if the given key is in this FST.
    pub fn contains_key<B: AsRef<[u8]>>(&self, key: B) -> bool {
        let mut node = self.root();
        for &b in key.as_ref() {
            node = match node.find_input(b) {
                None => return false,
                Some(i) => self.node(node.transition_addr(i)),
            }
        }
        node.is_final()
    }

    /// Return a lexicographically ordered stream of all key-value pairs in
    /// this fst.
    #[inline]
    pub fn stream(&self) -> Stream {
        self.stream_builder(AlwaysMatch).into_stream()
    }

    fn stream_builder<A: Automaton>(&self, aut: A) -> StreamBuilder<A> {
        StreamBuilder::new(&self.meta, &self.data, aut)
    }

    /// Return a builder for range queries.
    ///
    /// A range query returns a subset of key-value pairs in this fst in a
    /// range given in lexicographic order.
    #[inline]
    pub fn range(&self) -> StreamBuilder {
        self.stream_builder(AlwaysMatch)
    }

    /// Executes an automaton on the keys of this map.
    pub fn search<A: Automaton>(&self, aut: A) -> StreamBuilder<A> {
        self.stream_builder(aut)
    }

    /// Returns the number of keys in this fst.
    #[inline]
    pub fn len(&self) -> usize {
        self.meta.len
    }

    /// Returns true if and only if this fst has no keys.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of bytes used by this fst.
    #[inline]
    pub fn size(&self) -> usize {
        self.data.len()
    }

    /// Creates a new fst operation with this fst added to it.
    ///
    /// The `OpBuilder` type can be used to add additional fst streams
    /// and perform set operations like union, intersection, difference and
    /// symmetric difference on the keys of the fst. These set operations also
    /// allow one to specify how conflicting values are merged in the stream.
    #[inline]
    pub fn op(&self) -> OpBuilder {
        OpBuilder::default().add(self)
    }

    /// Returns true if and only if the `self` fst is disjoint with the fst
    /// `stream`.
    ///
    /// `stream` must be a lexicographically ordered sequence of byte strings
    /// with associated values.
    pub fn is_disjoint<'f, I, S>(&self, stream: I) -> bool
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], Output)>,
        S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], Output)>,
    {
        self.op().add(stream).intersection().next().is_none()
    }

    /// Returns true if and only if the `self` fst is a subset of the fst
    /// `stream`.
    ///
    /// `stream` must be a lexicographically ordered sequence of byte strings
    /// with associated values.
    pub fn is_subset<'f, I, S>(&self, stream: I) -> bool
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], Output)>,
        S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], Output)>,
    {
        let mut op = self.op().add(stream).intersection();
        let mut count = 0;
        while let Some(_) = op.next() {
            count += 1;
        }
        count == self.len()
    }

    /// Returns true if and only if the `self` fst is a superset of the fst
    /// `stream`.
    ///
    /// `stream` must be a lexicographically ordered sequence of byte strings
    /// with associated values.
    pub fn is_superset<'f, I, S>(&self, stream: I) -> bool
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], Output)>,
        S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], Output)>,
    {
        let mut op = self.op().add(stream).union();
        let mut count = 0;
        while let Some(_) = op.next() {
            count += 1;
        }
        count == self.len()
    }

    /// Returns the underlying type of this fst.
    ///
    /// FstType is a convention used to indicate the type of the underlying
    /// transducer.
    ///
    /// This crate reserves the range 0-255 (inclusive) but currently leaves
    /// the meaning of 0-255 unspecified.
    #[inline]
    pub fn fst_type(&self) -> FstType {
        self.meta.ty
    }

    /// Returns the root node of this fst.
    #[inline(always)]
    pub fn root(&self) -> Node {
        self.meta.root(self.data.deref())
    }

    /// Returns the node at the given address.
    ///
    /// Node addresses can be obtained by reading transitions on `Node` values.
    #[inline]
    pub fn node(&self, addr: CompiledAddr) -> Node {
        self.meta.node(addr, self.data.deref())
    }

    /// Returns a copy of the binary contents of this FST.
    #[inline]
    pub fn to_vec(&self) -> Vec<u8> {
        self.data.to_vec()
    }
}

impl<'a, 'f, Data> IntoStreamer<'a> for &'f Fst<Data>
where
    Data: Deref<Target = [u8]>,
{
    type Item = (&'a [u8], Output);
    type Into = Stream<'f>;

    #[inline]
    fn into_stream(self) -> Self::Into {
        self.stream()
    }
}

/// A builder for constructing range queries on streams.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `Stream`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'f` lifetime parameter refers to the lifetime of the underlying fst.
pub struct StreamBuilder<'f, A = AlwaysMatch> {
    meta: &'f FstMeta,
    data: &'f [u8],
    aut: A,
    min: Bound,
    max: Bound,
    backward: bool,
}

impl<'f, A: Automaton> StreamBuilder<'f, A> {
    fn new(meta: &'f FstMeta, data: &'f [u8], aut: A) -> Self {
        StreamBuilder {
            meta,
            data,
            aut,
            min: Bound::Unbounded,
            max: Bound::Unbounded,
            backward: false,
        }
    }

    /// Specify a greater-than-or-equal-to bound.
    pub fn ge<T: AsRef<[u8]>>(mut self, bound: T) -> Self {
        self.min = Bound::Included(bound.as_ref().to_owned());
        self
    }

    /// Specify a greater-than bound.
    pub fn gt<T: AsRef<[u8]>>(mut self, bound: T) -> Self {
        self.min = Bound::Excluded(bound.as_ref().to_owned());
        self
    }

    /// Specify a less-than-or-equal-to bound.
    pub fn le<T: AsRef<[u8]>>(mut self, bound: T) -> Self {
        self.max = Bound::Included(bound.as_ref().to_owned());
        self
    }

    /// Specify a less-than bound.
    pub fn lt<T: AsRef<[u8]>>(mut self, bound: T) -> Self {
        self.max = Bound::Excluded(bound.as_ref().to_owned());
        self
    }

    /// Sets the `StreamBuilder` to stream the `(key, value)` backward.
    pub fn backward(mut self) -> Self {
        self.backward = true;
        self
    }

    /// Return this builder and gives the automaton states
    /// along with the results.
    pub fn with_state(self) -> StreamWithStateBuilder<'f, A> {
        StreamWithStateBuilder(self)
    }
}

impl<'a, 'f, A: Automaton> IntoStreamer<'a> for StreamBuilder<'f, A> {
    type Item = (&'a [u8], Output);
    type Into = Stream<'f, A>;

    fn into_stream(self) -> Stream<'f, A> {
        Stream::new(
            self.meta,
            self.data,
            self.aut,
            self.min,
            self.max,
            self.backward,
        )
    }
}

/// A builder for constructing range queries of streams
/// that returns results along with automaton states.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `StreamWithState`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'f` lifetime parameter refers to the lifetime of the underlying fst.
pub struct StreamWithStateBuilder<'f, A = AlwaysMatch>(StreamBuilder<'f, A>);

impl<'a, 'f, A: 'a + Automaton> IntoStreamer<'a> for StreamWithStateBuilder<'f, A>
where
    A::State: Clone,
{
    type Item = (&'a [u8], Output, A::State);
    type Into = StreamWithState<'f, A>;

    fn into_stream(self) -> StreamWithState<'f, A> {
        StreamWithState::new(
            self.0.meta,
            self.0.data,
            self.0.aut,
            self.0.min,
            self.0.max,
            self.0.backward,
        )
    }
}

#[derive(Clone, Debug)]
enum Bound {
    Included(Vec<u8>),
    Excluded(Vec<u8>),
    Unbounded,
}

impl Bound {
    fn exceeded_by(&self, inp: &[u8]) -> bool {
        match *self {
            Bound::Included(ref v) => inp > v,
            Bound::Excluded(ref v) => inp >= v,
            Bound::Unbounded => false,
        }
    }

    fn subceeded_by(&self, inp: &[u8]) -> bool {
        match *self {
            Bound::Included(ref v) => inp < v,
            Bound::Excluded(ref v) => inp <= v,
            Bound::Unbounded => false,
        }
    }

    fn is_empty(&self) -> bool {
        match *self {
            Bound::Included(ref v) => v.is_empty(),
            Bound::Excluded(ref v) => v.is_empty(),
            Bound::Unbounded => true,
        }
    }

    fn is_inclusive(&self) -> bool {
        match *self {
            Bound::Excluded(_) => false,
            _ => true,
        }
    }
}

/// Stream of `key, value` not exposing the state of the automaton.
pub struct Stream<'f, A = AlwaysMatch>(StreamWithState<'f, A>)
where
    A: Automaton;

impl<'f, A: Automaton> Stream<'f, A> {
    fn new(
        meta: &'f FstMeta,
        data: &'f [u8],
        aut: A,
        min: Bound,
        max: Bound,
        backward: bool,
    ) -> Self {
        Self(StreamWithState::new(meta, data, aut, min, max, backward))
    }

    /// Convert this stream into a vector of byte strings and outputs.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_byte_vec(mut self) -> Vec<(Vec<u8>, u64)> {
        let mut vs = vec![];
        while let Some((k, v)) = self.next() {
            vs.push((k.to_vec(), v.value()));
        }
        vs
    }

    /// Convert this stream into a vector of Unicode strings and outputs.
    ///
    /// If any key is not valid UTF-8, then iteration on the stream is stopped
    /// and a UTF-8 decoding error is returned.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_str_vec(mut self) -> Result<Vec<(String, u64)>> {
        let mut vs = vec![];
        while let Some((k, v)) = self.next() {
            let k = String::from_utf8(k.to_vec()).map_err(Error::from)?;
            vs.push((k, v.value()));
        }
        Ok(vs)
    }

    /// Convert this stream into a vector of byte strings.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_byte_keys(mut self) -> Vec<Vec<u8>> {
        let mut vs = vec![];
        while let Some((k, _)) = self.next() {
            vs.push(k.to_vec());
        }
        vs
    }

    /// Convert this stream into a vector of Unicode strings.
    ///
    /// If any key is not valid UTF-8, then iteration on the stream is stopped
    /// and a UTF-8 decoding error is returned.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_str_keys(mut self) -> Result<Vec<String>> {
        let mut vs = vec![];
        while let Some((k, _)) = self.next() {
            let k = String::from_utf8(k.to_vec()).map_err(Error::from)?;
            vs.push(k);
        }
        Ok(vs)
    }

    /// Convert this stream into a vector of outputs.
    pub fn into_values(mut self) -> Vec<u64> {
        let mut vs = vec![];
        while let Some((_, v)) = self.next() {
            vs.push(v.value());
        }
        vs
    }
}

impl<'f, 'a, A: Automaton> Streamer<'a> for Stream<'f, A> {
    type Item = (&'a [u8], Output);

    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next(|_| ()).map(|(key, out, _)| (key, out))
    }
}

/// A lexicographically ordered stream from an fst
/// of key-value pairs along with the state of the automaton.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'f` lifetime parameter refers to the lifetime of the underlying fst.
#[derive(Clone)]
pub struct StreamWithState<'f, A = AlwaysMatch>
where
    A: Automaton,
{
    fst: &'f FstMeta,
    data: &'f [u8],
    aut: A,
    inp: Buffer,
    empty_output: Option<Output>,
    stack: Vec<StreamState<'f, A::State>>,
    end_at: Bound,
    min: Bound,
    max: Bound,
    reversed: bool,
}

#[derive(Clone, Debug)]
struct StreamState<'f, S> {
    node: Node<'f>,
    trans: usize,
    out: Output,
    aut_state: S,
    done: bool, // ('done' = true) means that there are no unexplored transitions in the current state.
                // 'trans' value should be ignored when done is true.
}

impl<'f, A: Automaton> StreamWithState<'f, A> {
    fn new(
        fst: &'f FstMeta,
        data: &'f [u8],
        aut: A,
        min: Bound,
        max: Bound,
        backward: bool,
    ) -> Self {
        let min_2 = min.clone();
        let max_2 = max.clone();
        let end_at: Bound = if !backward { max.clone() } else { min.clone() };
        let mut stream = StreamWithState {
            fst,
            data,
            aut,
            inp: Buffer::new(),
            empty_output: None,
            stack: vec![],
            end_at,
            min: min_2,
            max: max_2,
            reversed: backward,
        };
        stream.seek(&min, &max);
        stream
    }

    /// Seeks the underlying stream such that the next key to be read is the
    /// smallest key in the underlying fst that satisfies the given minimum
    /// bound.
    ///
    /// This theoretically should be straight-forward, but we need to make
    /// sure our stack is correct, which includes accounting for automaton
    /// states.
    fn seek(&mut self, min: &Bound, max: &Bound) {
        let start_bound = if self.reversed { &max } else { &min };
        if min.is_empty() && min.is_inclusive() {
            self.empty_output = self.resolve_empty_output(min, max);
        }
        if start_bound.is_empty() {
            self.stack.clear();
            let node = self.fst.root(self.data);
            let transition = self.starting_transition(&node);
            self.stack = vec![StreamState {
                node,
                trans: transition.unwrap_or_default(),
                out: Output::zero(),
                aut_state: self.aut.start(),
                done: transition.is_none(),
            }];
            return;
        }
        let (key, inclusive) = match start_bound {
            Bound::Excluded(ref start_bound) => (start_bound, false),
            Bound::Included(ref start_bound) => (start_bound, true),
            Bound::Unbounded => unreachable!(),
        };
        // At this point, we need to find the starting location of `min` in
        // the FST. However, as we search, we need to maintain a stack of
        // reader states so that the reader can pick up where we left off.
        // N.B. We do not necessarily need to stop in a final state, unlike
        // the one-off `find` method. For the example, the given bound might
        // not actually exist in the FST.
        let mut node = self.fst.root(self.data);
        let mut out = Output::zero();
        let mut aut_state = self.aut.start();
        for &b in key {
            match node.find_input(b) {
                Some(i) => {
                    let t = node.transition(i);
                    let prev_state = aut_state;
                    aut_state = self.aut.accept(&prev_state, b);
                    self.inp.push(b);
                    let transition = self.next_transition(&node, i);
                    self.stack.push(StreamState {
                        node,
                        trans: transition.unwrap_or_default(),
                        out,
                        aut_state: prev_state,
                        done: transition.is_none(),
                    });
                    out = out.cat(t.out);
                    node = self.fst.node(t.addr, self.data);
                }
                None => {
                    // This is a little tricky. We're in this case if the
                    // given bound is not a prefix of any key in the FST.
                    // Since this is a minimum bound, we need to find the
                    // first transition in this node that proceeds the current
                    // input byte.
                    let trans = self.transition_within_bound(&node, b);
                    self.stack.push(StreamState {
                        node,
                        trans: trans.unwrap_or_default(),
                        out,
                        aut_state,
                        done: trans.is_none(),
                    });
                    return;
                }
            }
        }
        if self.stack.is_empty() {
            return;
        }
        let last = self.stack.len() - 1;
        let state = &self.stack[last];
        let transition = if !state.done {
            self.previous_transition(&state.node, state.trans)
        } else {
            self.last_transition(&state.node)
        };
        if inclusive {
            self.stack[last].trans = transition.unwrap_or_default();
            self.stack[last].done = transition.is_none();
            self.inp.pop();
        } else {
            let next_node = self.fst.node(
                state.node.transition(transition.unwrap_or_default()).addr,
                self.data,
            );
            let starting_transition = self.starting_transition(&next_node);
            self.stack.push(StreamState {
                node: next_node,
                trans: starting_transition.unwrap_or_default(),
                out,
                aut_state,
                done: starting_transition.is_none(),
            });
        }
    }

    #[inline]
    fn next<F, T>(&mut self, transform: F) -> Option<(&[u8], Output, T)>
    where
        F: Fn(&A::State) -> T,
    {
        if !self.reversed {
            // Inorder empty output (will be first).
            if let Some(out) = self.empty_output.take() {
                return Some((&[], out, transform(&self.aut.start())));
            }
        }
        while let Some(state) = self.stack.pop() {
            if state.done || !self.aut.can_match(&state.aut_state) {
                if state.node.addr() != self.fst.root_addr {
                    // Reversed return next logic.
                    // If the stack is empty the value should not be returned.
                    if self.reversed && !self.stack.is_empty() && state.node.is_final() {
                        let out_of_bounds =
                            self.min.subceeded_by(&self.inp) || self.max.exceeded_by(&self.inp);
                        if !out_of_bounds && self.aut.is_match(&state.aut_state) {
                            return Some((&self.inp.pop(), state.out, transform(&state.aut_state)));
                        }
                    }
                    self.inp.pop();
                }
                continue;
            }
            let trans = state.node.transition(state.trans);
            let out = state.out.cat(trans.out);
            let next_state = self.aut.accept(&state.aut_state, trans.inp);
            let is_match = self.aut.is_match(&next_state);
            let next_node = self.fst.node(trans.addr, self.data);
            self.inp.push(trans.inp);
            let current_transition = self.next_transition(&state.node, state.trans);
            self.stack.push(StreamState {
                trans: current_transition.unwrap_or_default(),
                done: current_transition.is_none(),
                ..state
            });
            let ns = transform(&next_state);
            let next_transition = self.starting_transition(&next_node);
            self.stack.push(StreamState {
                node: next_node,
                trans: next_transition.unwrap_or_default(),
                out,
                aut_state: next_state,
                done: next_transition.is_none(),
            });
            // Inorder return next logic.
            if !self.reversed {
                if self.end_at.exceeded_by(&self.inp) {
                    // We are done, forever.
                    self.stack.clear();
                    return None;
                } else if !self.reversed && next_node.is_final() && is_match {
                    return Some((&self.inp, out.cat(next_node.final_output()), ns));
                }
            }
        }
        // If we are streaming backward, we still need to return the empty output, if empty is
        // part of our fst, matches the range and the automaton
        self.empty_output
            .take()
            .map(|out| (&[][..], out, transform(&self.aut.start())))
    }

    // The first transition that is in a bound for a given node.
    #[inline]
    fn transition_within_bound(&self, node: &Node<'f>, bound: u8) -> Option<usize> {
        let mut trans;
        if let Some(t) = self.starting_transition(&node) {
            trans = t;
        } else {
            return None;
        }
        loop {
            let transition = node.transition(trans);
            if (!self.reversed && transition.inp > bound)
                || (self.reversed && transition.inp < bound)
            {
                return Some(trans);
            } else if let Some(t) = self.next_transition(&node, trans) {
                trans = t;
            } else {
                return None;
            }
        }
    }

    /// Resolves value of the empty output. Will be none if the empty output should not be returned.
    #[inline]
    fn resolve_empty_output(&mut self, min: &Bound, max: &Bound) -> Option<Output> {
        if min.subceeded_by(&[]) || max.exceeded_by(&[]) {
            return None;
        }
        let start = self.aut.start();
        if !self.aut.is_match(&start) {
            return None;
        }
        self.fst.empty_final_output(self.data)
    }

    #[inline]
    fn starting_transition(&self, node: &Node<'f>) -> Option<usize> {
        if node.is_empty() {
            None
        } else if !self.reversed {
            Some(0)
        } else {
            Some(node.len() - 1)
        }
    }

    #[inline]
    fn last_transition(&self, node: &Node<'f>) -> Option<usize> {
        if node.is_empty() {
            None
        } else if self.reversed {
            Some(0)
        } else {
            Some(node.len() - 1)
        }
    }

    /// Returns the next transition.
    ///
    /// The concept of `next` transition is dependent on whether the stream is in reverse mode or
    /// not. If all the transitions of this node have been emitted, this method returns None.
    #[inline]
    fn next_transition(&self, node: &Node<'f>, current_transition: usize) -> Option<usize> {
        if self.reversed {
            Self::backward_transition(node, current_transition)
        } else {
            Self::forward_transition(node, current_transition)
        }
    }

    /// See `StreamWithState::next_transition`.
    #[inline]
    fn previous_transition(&self, node: &Node<'f>, current_transition: usize) -> Option<usize> {
        if self.reversed {
            Self::forward_transition(node, current_transition)
        } else {
            Self::backward_transition(node, current_transition)
        }
    }

    /// Returns the next logical transition.
    ///
    /// This is independent from whether the stream is in backward mode or not.
    #[inline]
    fn forward_transition(node: &Node<'f>, current_transition: usize) -> Option<usize> {
        if current_transition + 1 < node.len() {
            Some(current_transition + 1)
        } else {
            None
        }
    }

    /// See [Stream::forward_transition].
    #[inline]
    fn backward_transition(node: &Node<'f>, current_transition: usize) -> Option<usize> {
        if current_transition > 0 && !node.is_empty() {
            Some(current_transition - 1)
        } else {
            None
        }
    }
}

impl<'f, 'a, A: 'a + Automaton> Streamer<'a> for StreamWithState<'f, A>
where
    A::State: Clone,
{
    type Item = (&'a [u8], Output, A::State);

    fn next(&'a mut self) -> Option<Self::Item> {
        self.next(Clone::clone)
    }
}

/// An output is a value that is associated with a key in a finite state
/// transducer.
///
/// Note that outputs must satisfy an algebra. Namely, it must have an additive
/// identity and the following binary operations defined: `prefix`,
/// `concatenation` and `subtraction`. `prefix` and `concatenation` are
/// commutative while `subtraction` is not. `subtraction` is only defined on
/// pairs of operands where the first operand is greater than or equal to the
/// second operand.
///
/// Currently, output values must be `u64`. However, in theory, an output value
/// can be anything that satisfies the above algebra. Future versions of this
/// crate may make outputs generic on this algebra.
#[derive(Copy, Clone, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
pub struct Output(u64);

#[derive(Clone)]
struct Buffer {
    buf: Box<[u8]>,
    len: usize,
}

impl Buffer {
    fn new() -> Self {
        Buffer {
            buf: vec![0u8; KEY_BUFFER_CAPACITY].into_boxed_slice(),
            len: 0,
        }
    }

    fn capacity(&self) -> usize {
        self.buf.len()
    }

    fn double_cap(&mut self) {
        let old_cap = self.capacity();
        let new_cap = old_cap * 2;
        let mut new_buf = vec![0u8; new_cap].into_boxed_slice();
        new_buf[..old_cap].copy_from_slice(&self.buf[..old_cap]);
        mem::replace(&mut self.buf, new_buf);
    }

    fn push(&mut self, b: u8) {
        if self.capacity() <= self.len {
            self.double_cap();
        }
        self.buf[self.len] = b;
        self.len += 1;
    }

    // Pops one byte and returns the entire chain before the byte was popped.
    fn pop(&mut self) -> &[u8] {
        let len = self.len;
        self.len = len - 1;
        &self.buf[..len]
    }
}

impl Deref for Buffer {
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        &self.buf[..self.len]
    }
}

impl Output {
    /// Create a new output from a `u64`.
    #[inline]
    pub fn new(v: u64) -> Output {
        Output(v)
    }

    /// Create a zero output.
    #[inline]
    pub fn zero() -> Output {
        Output(0)
    }

    /// Retrieve the value inside this output.
    #[inline]
    pub fn value(self) -> u64 {
        self.0
    }

    /// Returns true if this is a zero output.
    #[inline]
    pub fn is_zero(self) -> bool {
        self.0 == 0
    }

    /// Returns the prefix of this output and `o`.
    #[inline]
    pub fn prefix(self, o: Output) -> Output {
        Output(cmp::min(self.0, o.0))
    }

    /// Returns the concatenation of this output and `o`.
    #[inline]
    pub fn cat(self, o: Output) -> Output {
        Output(self.0 + o.0)
    }

    /// Returns the subtraction of `o` from this output.
    ///
    /// This function panics if `self > o`.
    #[inline]
    pub fn sub(self, o: Output) -> Output {
        Output(
            self.0
                .checked_sub(o.0)
                .expect("BUG: underflow subtraction not allowed"),
        )
    }
}

/// A transition from one note to another.
#[derive(Copy, Clone, Hash, Eq, PartialEq)]
pub struct Transition {
    /// The byte input associated with this transition.
    pub inp: u8,
    /// The output associated with this transition.
    pub out: Output,
    /// The address of the node that this transition points to.
    pub addr: CompiledAddr,
}

impl Default for Transition {
    #[inline]
    fn default() -> Self {
        Transition {
            inp: 0,
            out: Output::zero(),
            addr: NONE_ADDRESS,
        }
    }
}

impl fmt::Debug for Transition {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.out.is_zero() {
            write!(f, "{} -> {}", self.inp as char, self.addr)
        } else {
            write!(
                f,
                "({}, {}) -> {}",
                self.inp as char,
                self.out.value(),
                self.addr
            )
        }
    }
}

#[inline]
#[cfg(target_pointer_width = "64")]
fn u64_to_usize(n: u64) -> usize {
    n as usize
}

#[inline]
#[cfg(not(target_pointer_width = "64"))]
fn u64_to_usize(n: u64) -> usize {
    if n > ::std::usize::MAX as u64 {
        panic!(
            "\
Cannot convert node address {} to a pointer sized variable. If this FST
is very large and was generated on a system with a larger pointer size
than this system, then it is not possible to read this FST on this
system.",
            n
        );
    }
    n as usize
}