1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
use std::fmt;
use std::io;
use std::iter::FromIterator;

use crate::automaton::{AlwaysMatch, Automaton};
use crate::raw;
pub use crate::raw::IndexedValue;
use crate::stream::{IntoStreamer, Streamer};
use crate::Result;
use std::ops::Deref;

/// Map is a lexicographically ordered map from byte strings to integers.
///
/// A `Map` is constructed with the `MapBuilder` type. Alternatively, a `Map`
/// can be constructed in memory from a lexicographically ordered iterator
/// of key-value pairs (`Map::from_iter`).
///
/// A key feature of `Map` is that it can be serialized to disk compactly. Its
/// underlying representation is built such that the `Map` can be memory mapped
/// (`Map::from_path`) and searched without necessarily loading the entire
/// map into memory.
///
/// It supports most common operations associated with maps, such as key
/// lookup and search. It also supports set operations on its keys along with
/// the ability to specify how conflicting values are merged together. Maps
/// also support range queries and automata based searches (e.g. a regular
/// expression).
///
/// Maps are represented by a finite state transducer where inputs are the keys
/// and outputs are the values. As such, maps have the following invariants:
///
/// 1. Once constructed, a `Map` can never be modified.
/// 2. Maps must be constructed with lexicographically ordered byte sequences.
///    There is no restricting on the ordering of values.
///
/// # Differences with sets
///
/// Maps and sets are represented by the same underlying data structure: the
/// finite state transducer. The principal difference between them is that
/// sets always have their output values set to `0`. This has an impact on the
/// representation size and is reflected in the type system for convenience.
/// A secondary but subtle difference is that duplicate values can be added
/// to a set, but it is an error to do so with maps. That is, a set can have
/// the same key added sequentially, but a map can't.
///
/// # The future
///
/// It is regrettable that the output value is fixed to `u64`. Indeed, it is
/// not necessary, but it was a major simplification in the implementation.
/// In the future, the value type may become generic to an extent (outputs must
/// satisfy a basic algebra).
///
/// Keys will always be byte strings; however, we may grow more conveniences
/// around dealing with them (such as a serialization/deserialization step,
/// although it isn't clear where exactly this should live).
pub struct Map<Data>(raw::Fst<Data>);

impl Map<Vec<u8>> {
    /// Creates a map from its representation as a raw byte sequence.
    ///
    /// Note that this operation is very cheap (no allocations and no copies).
    ///
    /// The map must have been written with a compatible finite state
    /// transducer builder (`MapBuilder` qualifies). If the format is invalid
    /// or if there is a mismatch between the API version of this library
    /// and the map, then an error is returned.
    pub fn from_bytes(bytes: Vec<u8>) -> Result<Map<Vec<u8>>> {
        raw::Fst::new(bytes).map(Map)
    }

    /// Create a `Map` from an iterator of lexicographically ordered byte
    /// strings and associated values.
    ///
    /// If the iterator does not yield unique keys in lexicographic order, then
    /// an error is returned.
    ///
    /// Note that this is a convenience function to build a map in memory.
    /// To build a map that streams to an arbitrary `io::Write`, use
    /// `MapBuilder`.
    pub fn from_iter<K, I>(iter: I) -> Result<Self>
    where
        K: AsRef<[u8]>,
        I: IntoIterator<Item = (K, u64)>,
    {
        let mut builder = MapBuilder::memory();
        builder.extend_iter(iter)?;
        Map::from_bytes(builder.into_inner()?)
    }
}

impl<Data: Deref<Target = [u8]>> Map<Data> {
    /// Tests the membership of a single key.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tantivy_fst::Map;
    ///
    /// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
    ///
    /// assert_eq!(map.contains_key("b"), true);
    /// assert_eq!(map.contains_key("z"), false);
    /// ```
    pub fn contains_key<K: AsRef<[u8]>>(&self, key: K) -> bool {
        self.0.contains_key(key)
    }

    /// Retrieves the value associated with a key.
    ///
    /// If the key does not exist, then `None` is returned.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tantivy_fst::Map;
    ///
    /// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
    ///
    /// assert_eq!(map.get("b"), Some(2));
    /// assert_eq!(map.get("z"), None);
    /// ```
    pub fn get<K: AsRef<[u8]>>(&self, key: K) -> Option<u64> {
        self.0.get(key).map(|output| output.value())
    }

    /// Return a lexicographically ordered stream of all key-value pairs in
    /// this map.
    ///
    /// While this is a stream, it does require heap space proportional to the
    /// longest key in the map.
    ///
    /// If the map is memory mapped, then no further heap space is needed.
    /// Note though that your operating system may fill your page cache
    /// (which will cause the resident memory usage of the process to go up
    /// correspondingly).
    ///
    /// # Example
    ///
    /// Since streams are not iterators, the traditional `for` loop cannot be
    /// used. `while let` is useful instead:
    ///
    /// ```rust
    /// use tantivy_fst::{IntoStreamer, Streamer, Map};
    ///
    /// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
    /// let mut stream = map.stream();
    ///
    /// let mut kvs = vec![];
    /// while let Some((k, v)) = stream.next() {
    ///     kvs.push((k.to_vec(), v));
    /// }
    /// assert_eq!(kvs, vec![
    ///     (b"a".to_vec(), 1),
    ///     (b"b".to_vec(), 2),
    ///     (b"c".to_vec(), 3),
    /// ]);
    /// ```
    #[inline]
    pub fn stream(&self) -> Stream {
        Stream(self.0.stream())
    }

    /// Return a lexicographically ordered stream of all keys in this map.
    ///
    /// Memory requirements are the same as described on `Map::stream`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tantivy_fst::{IntoStreamer, Streamer, Map};
    ///
    /// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
    /// let mut stream = map.keys();
    ///
    /// let mut keys = vec![];
    /// while let Some(k) = stream.next() {
    ///     keys.push(k.to_vec());
    /// }
    /// assert_eq!(keys, vec![b"a", b"b", b"c"]);
    /// ```
    #[inline]
    pub fn keys(&self) -> Keys {
        Keys(self.0.stream())
    }

    /// Return a stream of all values in this map ordered lexicographically
    /// by each value's corresponding key.
    ///
    /// Memory requirements are the same as described on `Map::stream`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use tantivy_fst::{IntoStreamer, Streamer, Map};
    ///
    /// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
    /// let mut stream = map.values();
    ///
    /// let mut values = vec![];
    /// while let Some(v) = stream.next() {
    ///     values.push(v);
    /// }
    /// assert_eq!(values, vec![1, 2, 3]);
    /// ```
    #[inline]
    pub fn values(&self) -> Values {
        Values(self.0.stream())
    }

    /// Return a builder for range queries.
    ///
    /// A range query returns a subset of key-value pairs in this map in a
    /// range given in lexicographic order.
    ///
    /// Memory requirements are the same as described on `Map::stream`.
    /// Notably, only the keys in the range are read; keys outside the range
    /// are not.
    ///
    /// # Example
    ///
    /// Returns only the key-value pairs in the range given.
    ///
    /// ```rust
    /// use tantivy_fst::{IntoStreamer, Streamer, Map};
    ///
    /// let map = Map::from_iter(vec![
    ///     ("a", 1), ("b", 2), ("c", 3), ("d", 4), ("e", 5),
    /// ]).unwrap();
    /// let mut stream = map.range().ge("b").lt("e").into_stream();
    ///
    /// let mut kvs = vec![];
    /// while let Some((k, v)) = stream.next() {
    ///     kvs.push((k.to_vec(), v));
    /// }
    /// assert_eq!(kvs, vec![
    ///     (b"b".to_vec(), 2),
    ///     (b"c".to_vec(), 3),
    ///     (b"d".to_vec(), 4),
    /// ]);
    /// ```
    #[inline]
    pub fn range(&self) -> StreamBuilder {
        StreamBuilder(self.0.range())
    }

    /// Executes an automaton on the keys of this map.
    ///
    /// Note that this returns a `StreamBuilder`, which can be used to
    /// add a range query to the search (see the `range` method).
    ///
    /// Memory requirements are the same as described on `Map::stream`.
    ///
    /// # Example
    ///
    /// An implementation of regular expressions for `Automaton` is available
    /// in the `fst-regex` crate, which can be used to search maps.
    ///
    /// ```rust
    ///
    /// use std::error::Error;
    ///
    /// use tantivy_fst::{IntoStreamer, Streamer, Map};
    /// use tantivy_fst::Regex;
    ///
    /// fn example() -> Result<(), Box<Error>> {
    ///     let map = Map::from_iter(vec![
    ///         ("foo", 1), ("foo1", 2), ("foo2", 3), ("foo3", 4), ("foobar", 5),
    ///     ]).unwrap();
    ///
    ///     let re = Regex::new("f[a-z]+3?").unwrap();
    ///     let mut stream = map.search(&re).into_stream();
    ///
    ///     let mut kvs = vec![];
    ///     while let Some((k, v)) = stream.next() {
    ///         kvs.push((k.to_vec(), v));
    ///     }
    ///     assert_eq!(kvs, vec![
    ///         (b"foo".to_vec(), 1),
    ///         (b"foo3".to_vec(), 4),
    ///         (b"foobar".to_vec(), 5),
    ///     ]);
    ///
    ///     Ok(())
    /// }
    ///
    /// # assert!(example().is_ok());
    /// ```
    pub fn search<A: Automaton>(&self, aut: A) -> StreamBuilder<A> {
        StreamBuilder(self.0.search(aut))
    }

    /// Returns the number of elements in this map.
    #[inline]
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns true if and only if this map is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Creates a new map operation with this map added to it.
    ///
    /// The `OpBuilder` type can be used to add additional map streams
    /// and perform set operations like union, intersection, difference and
    /// symmetric difference on the keys of the map. These set operations also
    /// allow one to specify how conflicting values are merged in the stream.
    ///
    /// # Example
    ///
    /// This example demonstrates a union on multiple map streams. Notice that
    /// the stream returned from the union is not a sequence of key-value
    /// pairs, but rather a sequence of keys associated with one or more
    /// values. Namely, a key is associated with each value associated with
    /// that same key in the all of the streams.
    ///
    /// ```rust
    /// use tantivy_fst::{Streamer, Map};
    /// use tantivy_fst::{map::IndexedValue};
    ///
    /// let map1 = Map::from_iter(vec![
    ///     ("a", 1), ("b", 2), ("c", 3),
    /// ]).unwrap();
    /// let map2 = Map::from_iter(vec![
    ///     ("a", 10), ("y", 11), ("z", 12),
    /// ]).unwrap();
    ///
    /// let mut union = map1.op().add(&map2).union();
    ///
    /// let mut kvs = vec![];
    /// while let Some((k, vs)) = union.next() {
    ///     kvs.push((k.to_vec(), vs.to_vec()));
    /// }
    /// assert_eq!(kvs, vec![
    ///     (b"a".to_vec(), vec![
    ///         IndexedValue { index: 0, value: 1 },
    ///         IndexedValue { index: 1, value: 10 },
    ///     ]),
    ///     (b"b".to_vec(), vec![IndexedValue { index: 0, value: 2 }]),
    ///     (b"c".to_vec(), vec![IndexedValue { index: 0, value: 3 }]),
    ///     (b"y".to_vec(), vec![IndexedValue { index: 1, value: 11 }]),
    ///     (b"z".to_vec(), vec![IndexedValue { index: 1, value: 12 }]),
    /// ]);
    /// ```
    #[inline]
    pub fn op(&self) -> OpBuilder {
        OpBuilder::new().add(self)
    }

    /// Returns a reference to the underlying raw finite state transducer.
    #[inline]
    pub fn as_fst(&self) -> &raw::Fst<Data> {
        &self.0
    }
}

impl<Data: Deref<Target = [u8]>> fmt::Debug for Map<Data> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Map([")?;
        let mut stream = self.stream();
        let mut first = true;
        while let Some((k, v)) = stream.next() {
            if !first {
                write!(f, ", ")?;
            }
            first = false;
            write!(f, "({}, {})", String::from_utf8_lossy(k), v)?;
        }
        write!(f, "])")
    }
}

// Construct a map from an Fst object.
impl<Data> From<raw::Fst<Data>> for Map<Data> {
    #[inline]
    fn from(fst: raw::Fst<Data>) -> Self {
        Map(fst)
    }
}

/// Returns the underlying finite state transducer.
impl<Data> AsRef<raw::Fst<Data>> for Map<Data> {
    #[inline]
    fn as_ref(&self) -> &raw::Fst<Data> {
        &self.0
    }
}

impl<'m, 'a, Data: Deref<Target = [u8]>> IntoStreamer<'a> for &'m Map<Data> {
    type Item = (&'a [u8], u64);
    type Into = Stream<'m>;

    #[inline]
    fn into_stream(self) -> Self::Into {
        Stream(self.0.stream())
    }
}

/// A builder for creating a map.
///
/// This is not your average everyday builder. It has two important qualities
/// that make it a bit unique from what you might expect:
///
/// 1. All keys must be added in lexicographic order. Adding a key out of order
///    will result in an error. Additionally, adding a duplicate key will also
///    result in an error. That is, once a key is associated with a value,
///    that association can never be modified or deleted.
/// 2. The representation of a map is streamed to *any* `io::Write` as it is
///    built. For an in memory representation, this can be a `Vec<u8>`.
///
/// Point (2) is especially important because it means that a map can be
/// constructed *without storing the entire map in memory*. Namely, since it
/// works with any `io::Write`, it can be streamed directly to a file.
///
/// With that said, the builder does use memory, but **memory usage is bounded
/// to a constant size**. The amount of memory used trades off with the
/// compression ratio. Currently, the implementation hard codes this trade off
/// which can result in about 5-20MB of heap usage during construction. (N.B.
/// Guaranteeing a maximal compression ratio requires memory proportional to
/// the size of the map, which defeats some of the benefit of streaming
/// it to disk. In practice, a small bounded amount of memory achieves
/// close-to-minimal compression ratios.)
///
/// The algorithmic complexity of map construction is `O(n)` where `n` is the
/// number of elements added to the map.
///
/// # Example: build in memory
///
/// This shows how to use the builder to construct a map in memory. Note that
/// `Map::from_iter` provides a convenience function that achieves this same
/// goal without needing to explicitly use `MapBuilder`.
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map, MapBuilder};
///
/// let mut build = MapBuilder::memory();
/// build.insert("bruce", 1).unwrap();
/// build.insert("clarence", 2).unwrap();
/// build.insert("stevie", 3).unwrap();
///
/// // You could also call `finish()` here, but since we're building the map in
/// // memory, there would be no way to get the `Vec<u8>` back.
/// let bytes = build.into_inner().unwrap();
///
/// // At this point, the map has been constructed, but here's how to read it.
/// let map = Map::from_bytes(bytes).unwrap();
/// let mut stream = map.into_stream();
/// let mut kvs = vec![];
/// while let Some((k, v)) = stream.next() {
///     kvs.push((k.to_vec(), v));
/// }
/// assert_eq!(kvs, vec![
///     (b"bruce".to_vec(), 1),
///     (b"clarence".to_vec(), 2),
///     (b"stevie".to_vec(), 3),
/// ]);
/// ```
pub struct MapBuilder<W>(raw::Builder<W>);

impl MapBuilder<Vec<u8>> {
    /// Create a builder that builds a map in memory.
    #[inline]
    pub fn memory() -> Self {
        MapBuilder(raw::Builder::memory())
    }
}

impl<W: io::Write> MapBuilder<W> {
    /// Create a builder that builds a map by writing it to `wtr` in a
    /// streaming fashion.
    pub fn new(wtr: W) -> Result<MapBuilder<W>> {
        raw::Builder::new_type(wtr, 0).map(MapBuilder)
    }

    /// Insert a new key-value pair into the map.
    ///
    /// Keys must be convertible to byte strings. Values must be a `u64`, which
    /// is a restriction of the current implementation of finite state
    /// transducers. (Values may one day be expanded to other types.)
    ///
    /// If a key is inserted that is less than or equal to any previous key
    /// added, then an error is returned. Similarly, if there was a problem
    /// writing to the underlying writer, an error is returned.
    pub fn insert<K: AsRef<[u8]>>(&mut self, key: K, val: u64) -> Result<()> {
        self.0.insert(key, val)
    }

    /// Calls insert on each item in the iterator.
    ///
    /// If an error occurred while adding an element, processing is stopped
    /// and the error is returned.
    ///
    /// If a key is inserted that is less than or equal to any previous key
    /// added, then an error is returned. Similarly, if there was a problem
    /// writing to the underlying writer, an error is returned.
    pub fn extend_iter<K, I>(&mut self, iter: I) -> Result<()>
    where
        K: AsRef<[u8]>,
        I: IntoIterator<Item = (K, u64)>,
    {
        self.0
            .extend_iter(iter.into_iter().map(|(k, v)| (k, raw::Output::new(v))))
    }

    /// Calls insert on each item in the stream.
    ///
    /// Note that unlike `extend_iter`, this is not generic on the items in
    /// the stream.
    ///
    /// If a key is inserted that is less than or equal to any previous key
    /// added, then an error is returned. Similarly, if there was a problem
    /// writing to the underlying writer, an error is returned.
    pub fn extend_stream<'f, I, S>(&mut self, stream: I) -> Result<()>
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
        S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
    {
        self.0.extend_stream(StreamOutput(stream.into_stream()))
    }

    /// Finishes the construction of the map and flushes the underlying
    /// writer. After completion, the data written to `W` may be read using
    /// one of `Map`'s constructor methods.
    pub fn finish(self) -> Result<()> {
        self.0.finish()
    }

    /// Just like `finish`, except it returns the underlying writer after
    /// flushing it.
    pub fn into_inner(self) -> Result<W> {
        self.0.into_inner()
    }

    /// Gets a reference to the underlying writer.
    pub fn get_ref(&self) -> &W {
        self.0.get_ref()
    }

    /// Returns the number of bytes written to the underlying writer
    pub fn bytes_written(&self) -> u64 {
        self.0.bytes_written()
    }
}

/// A lexicographically ordered stream of key-value pairs from a map.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Stream<'m, A = AlwaysMatch>(raw::Stream<'m, A>)
where
    A: Automaton;

impl<'a, 'm, A: Automaton> Streamer<'a> for Stream<'m, A> {
    type Item = (&'a [u8], u64);

    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next().map(|(key, out)| (key, out.value()))
    }
}

impl<'m, A: Automaton> Stream<'m, A> {
    /// Convert this stream into a vector of byte strings and outputs.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_byte_vec(self) -> Vec<(Vec<u8>, u64)> {
        self.0.into_byte_vec()
    }

    /// Convert this stream into a vector of Unicode strings and outputs.
    ///
    /// If any key is not valid UTF-8, then iteration on the stream is stopped
    /// and a UTF-8 decoding error is returned.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_str_vec(self) -> Result<Vec<(String, u64)>> {
        self.0.into_str_vec()
    }

    /// Convert this stream into a vector of byte strings.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_byte_keys(self) -> Vec<Vec<u8>> {
        self.0.into_byte_keys()
    }

    /// Convert this stream into a vector of Unicode strings.
    ///
    /// If any key is not valid UTF-8, then iteration on the stream is stopped
    /// and a UTF-8 decoding error is returned.
    ///
    /// Note that this creates a new allocation for every key in the stream.
    pub fn into_str_keys(self) -> Result<Vec<String>> {
        self.0.into_str_keys()
    }

    /// Convert this stream into a vector of outputs.
    pub fn into_values(self) -> Vec<u64> {
        self.0.into_values()
    }
}

/// A lexicographically ordered stream of keys from a map.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Keys<'m>(raw::Stream<'m>);

impl<'a, 'm> Streamer<'a> for Keys<'m> {
    type Item = &'a [u8];

    #[inline]
    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next().map(|(key, _)| key)
    }
}

/// A stream of values from a map, lexicographically ordered by each value's
/// corresponding key.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Values<'m>(raw::Stream<'m>);

impl<'a, 'm> Streamer<'a> for Values<'m> {
    type Item = u64;

    #[inline]
    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next().map(|(_, out)| out.value())
    }
}

/// A builder for constructing range queries on streams.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `Stream`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct StreamBuilder<'m, A = AlwaysMatch>(raw::StreamBuilder<'m, A>);

impl<'m, A: Automaton> StreamBuilder<'m, A> {
    /// Specify a greater-than-or-equal-to bound.
    pub fn ge<T: AsRef<[u8]>>(self, bound: T) -> Self {
        StreamBuilder(self.0.ge(bound))
    }

    /// Specify a greater-than bound.
    pub fn gt<T: AsRef<[u8]>>(self, bound: T) -> Self {
        StreamBuilder(self.0.gt(bound))
    }

    /// Specify a less-than-or-equal-to bound.
    pub fn le<T: AsRef<[u8]>>(self, bound: T) -> Self {
        StreamBuilder(self.0.le(bound))
    }

    /// Specify a less-than bound.
    pub fn lt<T: AsRef<[u8]>>(self, bound: T) -> Self {
        StreamBuilder(self.0.lt(bound))
    }

    /// Make it iterate backwards.
    pub fn backward(self) -> Self {
        StreamBuilder(self.0.backward())
    }

    /// Return this builder and gives the automaton states
    /// along with the results.
    pub fn with_state(self) -> StreamWithStateBuilder<'m, A> {
        StreamWithStateBuilder(self.0.with_state())
    }
}

impl<'m, 'a, A: Automaton> IntoStreamer<'a> for StreamBuilder<'m, A> {
    type Item = (&'a [u8], u64);
    type Into = Stream<'m, A>;

    fn into_stream(self) -> Self::Into {
        Stream(self.0.into_stream())
    }
}

/// A builder for constructing range queries of streams
/// that returns results along with automaton states.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `StreamWithState`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct StreamWithStateBuilder<'m, A = AlwaysMatch>(raw::StreamWithStateBuilder<'m, A>);

impl<'m, 'a, A: 'a + Automaton> IntoStreamer<'a> for StreamWithStateBuilder<'m, A>
where
    A::State: Clone,
{
    type Item = (&'a [u8], u64, A::State);
    type Into = StreamWithState<'m, A>;

    fn into_stream(self) -> Self::Into {
        StreamWithState(self.0.into_stream())
    }
}

/// A builder for collecting map streams on which to perform set operations
/// on the keys of maps.
///
/// Set operations include intersection, union, difference and symmetric
/// difference. The result of each set operation is itself a stream that emits
/// pairs of keys and a sequence of each occurrence of that key in the
/// participating streams. This information allows one to perform set
/// operations on maps and customize how conflicting output values are handled.
///
/// All set operations work efficiently on an arbitrary number of
/// streams with memory proportional to the number of streams.
///
/// The algorithmic complexity of all set operations is `O(n1 + n2 + n3 + ...)`
/// where `n1, n2, n3, ...` correspond to the number of elements in each
/// stream.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying set.
pub struct OpBuilder<'m>(raw::OpBuilder<'m>);

impl<'m> OpBuilder<'m> {
    /// Create a new set operation builder.
    #[inline]
    pub fn new() -> Self {
        OpBuilder(raw::OpBuilder::default())
    }

    /// Add a stream to this set operation.
    ///
    /// This is useful for a chaining style pattern, e.g.,
    /// `builder.add(stream1).add(stream2).union()`.
    ///
    /// The stream must emit a lexicographically ordered sequence of key-value
    /// pairs.
    pub fn add<I, S>(mut self, streamable: I) -> Self
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
        S: 'm + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
    {
        self.push(streamable);
        self
    }

    /// Add a stream to this set operation.
    ///
    /// The stream must emit a lexicographically ordered sequence of key-value
    /// pairs.
    pub fn push<I, S>(&mut self, streamable: I)
    where
        I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
        S: 'm + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
    {
        self.0.push(StreamOutput(streamable.into_stream()));
    }

    /// Performs a union operation on all streams that have been added.
    ///
    /// Note that this returns a stream of `(&[u8], &[IndexedValue])`. The
    /// first element of the tuple is the byte string key. The second element
    /// of the tuple is a list of all occurrences of that key in participating
    /// streams. The `IndexedValue` contains an index and the value associated
    /// with that key in that stream. The index uniquely identifies each
    /// stream, which is an integer that is auto-incremented when a stream
    /// is added to this operation (starting at `0`).
    ///
    /// # Example
    ///
    /// ```rust
    /// use tantivy_fst::{IntoStreamer, Streamer, Map};
    /// use tantivy_fst::map::IndexedValue;
    ///
    /// let map1 = Map::from_iter(vec![
    ///     ("a", 1), ("b", 2), ("c", 3),
    /// ]).unwrap();
    /// let map2 = Map::from_iter(vec![
    ///     ("a", 11), ("y", 12), ("z", 13),
    /// ]).unwrap();
    ///
    /// let mut union = map1.op().add(&map2).union();
    ///
    /// let mut kvs = vec![];
    /// while let Some((k, vs)) = union.next() {
    ///     kvs.push((k.to_vec(), vs.to_vec()));
    /// }
    /// assert_eq!(kvs, vec![
    ///     (b"a".to_vec(), vec![
    ///         IndexedValue { index: 0, value: 1 },
    ///         IndexedValue { index: 1, value: 11 },
    ///     ]),
    ///     (b"b".to_vec(), vec![IndexedValue { index: 0, value: 2 }]),
    ///     (b"c".to_vec(), vec![IndexedValue { index: 0, value: 3 }]),
    ///     (b"y".to_vec(), vec![IndexedValue { index: 1, value: 12 }]),
    ///     (b"z".to_vec(), vec![IndexedValue { index: 1, value: 13 }]),
    /// ]);
    /// ```
    #[inline]
    pub fn union(self) -> Union<'m> {
        Union(self.0.union())
    }

    /// Performs an intersection operation on all streams that have been added.
    ///
    /// Note that this returns a stream of `(&[u8], &[IndexedValue])`. The
    /// first element of the tuple is the byte string key. The second element
    /// of the tuple is a list of all occurrences of that key in participating
    /// streams. The `IndexedValue` contains an index and the value associated
    /// with that key in that stream. The index uniquely identifies each
    /// stream, which is an integer that is auto-incremented when a stream
    /// is added to this operation (starting at `0`).
    ///
    /// # Example
    ///
    /// ```rust
    /// use tantivy_fst::{IntoStreamer, Streamer, Map};
    /// use tantivy_fst::map::IndexedValue;
    ///
    /// let map1 = Map::from_iter(vec![
    ///     ("a", 1), ("b", 2), ("c", 3),
    /// ]).unwrap();
    /// let map2 = Map::from_iter(vec![
    ///     ("a", 11), ("y", 12), ("z", 13),
    /// ]).unwrap();
    ///
    /// let mut intersection = map1.op().add(&map2).intersection();
    ///
    /// let mut kvs = vec![];
    /// while let Some((k, vs)) = intersection.next() {
    ///     kvs.push((k.to_vec(), vs.to_vec()));
    /// }
    /// assert_eq!(kvs, vec![
    ///     (b"a".to_vec(), vec![
    ///         IndexedValue { index: 0, value: 1 },
    ///         IndexedValue { index: 1, value: 11 },
    ///     ]),
    /// ]);
    /// ```
    #[inline]
    pub fn intersection(self) -> Intersection<'m> {
        Intersection(self.0.intersection())
    }

    /// Performs a difference operation with respect to the first stream added.
    /// That is, this returns a stream of all elements in the first stream
    /// that don't exist in any other stream that has been added.
    ///
    /// Note that this returns a stream of `(&[u8], &[IndexedValue])`. The
    /// first element of the tuple is the byte string key. The second element
    /// of the tuple is a list of all occurrences of that key in participating
    /// streams. The `IndexedValue` contains an index and the value associated
    /// with that key in that stream. The index uniquely identifies each
    /// stream, which is an integer that is auto-incremented when a stream
    /// is added to this operation (starting at `0`).
    ///
    /// # Example
    ///
    /// ```rust
    /// use tantivy_fst::{Streamer, Map};
    /// use tantivy_fst::map::IndexedValue;
    ///
    /// let map1 = Map::from_iter(vec![
    ///     ("a", 1), ("b", 2), ("c", 3),
    /// ]).unwrap();
    /// let map2 = Map::from_iter(vec![
    ///     ("a", 11), ("y", 12), ("z", 13),
    /// ]).unwrap();
    ///
    /// let mut difference = map1.op().add(&map2).difference();
    ///
    /// let mut kvs = vec![];
    /// while let Some((k, vs)) = difference.next() {
    ///     kvs.push((k.to_vec(), vs.to_vec()));
    /// }
    /// assert_eq!(kvs, vec![
    ///     (b"b".to_vec(), vec![IndexedValue { index: 0, value: 2 }]),
    ///     (b"c".to_vec(), vec![IndexedValue { index: 0, value: 3 }]),
    /// ]);
    /// ```
    #[inline]
    pub fn difference(self) -> Difference<'m> {
        Difference(self.0.difference())
    }

    /// Performs a symmetric difference operation on all of the streams that
    /// have been added.
    ///
    /// When there are only two streams, then the keys returned correspond to
    /// keys that are in either stream but *not* in both streams.
    ///
    /// More generally, for any number of streams, keys that occur in an odd
    /// number of streams are returned.
    ///
    /// Note that this returns a stream of `(&[u8], &[IndexedValue])`. The
    /// first element of the tuple is the byte string key. The second element
    /// of the tuple is a list of all occurrences of that key in participating
    /// streams. The `IndexedValue` contains an index and the value associated
    /// with that key in that stream. The index uniquely identifies each
    /// stream, which is an integer that is auto-incremented when a stream
    /// is added to this operation (starting at `0`).
    ///
    /// # Example
    ///
    /// ```rust
    /// use tantivy_fst::{IntoStreamer, Streamer, Map};
    /// use tantivy_fst::map::IndexedValue;
    ///
    /// let map1 = Map::from_iter(vec![
    ///     ("a", 1), ("b", 2), ("c", 3),
    /// ]).unwrap();
    /// let map2 = Map::from_iter(vec![
    ///     ("a", 11), ("y", 12), ("z", 13),
    /// ]).unwrap();
    ///
    /// let mut sym_difference = map1.op().add(&map2).symmetric_difference();
    ///
    /// let mut kvs = vec![];
    /// while let Some((k, vs)) = sym_difference.next() {
    ///     kvs.push((k.to_vec(), vs.to_vec()));
    /// }
    /// assert_eq!(kvs, vec![
    ///     (b"b".to_vec(), vec![IndexedValue { index: 0, value: 2 }]),
    ///     (b"c".to_vec(), vec![IndexedValue { index: 0, value: 3 }]),
    ///     (b"y".to_vec(), vec![IndexedValue { index: 1, value: 12 }]),
    ///     (b"z".to_vec(), vec![IndexedValue { index: 1, value: 13 }]),
    /// ]);
    /// ```
    #[inline]
    pub fn symmetric_difference(self) -> SymmetricDifference<'m> {
        SymmetricDifference(self.0.symmetric_difference())
    }
}

impl<'f, I, S> Extend<I> for OpBuilder<'f>
where
    I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
    S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
{
    fn extend<T>(&mut self, it: T)
    where
        T: IntoIterator<Item = I>,
    {
        for stream in it {
            self.push(stream);
        }
    }
}

impl<'f, I, S> FromIterator<I> for OpBuilder<'f>
where
    I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
    S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
{
    fn from_iter<T>(it: T) -> Self
    where
        T: IntoIterator<Item = I>,
    {
        let mut op = OpBuilder::new();
        op.extend(it);
        op
    }
}

/// A stream of set union over multiple map streams in lexicographic order.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Union<'m>(raw::Union<'m>);

impl<'a, 'm> Streamer<'a> for Union<'m> {
    type Item = (&'a [u8], &'a [IndexedValue]);

    #[inline]
    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

/// A stream of set intersection over multiple map streams in lexicographic
/// order.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Intersection<'m>(raw::Intersection<'m>);

impl<'a, 'm> Streamer<'a> for Intersection<'m> {
    type Item = (&'a [u8], &'a [IndexedValue]);

    #[inline]
    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

/// A stream of set difference over multiple map streams in lexicographic
/// order.
///
/// The difference operation is taken with respect to the first stream and the
/// rest of the streams. i.e., All elements in the first stream that do not
/// appear in any other streams.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Difference<'m>(raw::Difference<'m>);

impl<'a, 'm> Streamer<'a> for Difference<'m> {
    type Item = (&'a [u8], &'a [IndexedValue]);

    #[inline]
    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

/// A stream of set symmetric difference over multiple map streams in
/// lexicographic order.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct SymmetricDifference<'m>(raw::SymmetricDifference<'m>);

impl<'a, 'm> Streamer<'a> for SymmetricDifference<'m> {
    type Item = (&'a [u8], &'a [IndexedValue]);

    #[inline]
    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next()
    }
}

/// A specialized stream for mapping map streams (`(&[u8], u64)`) to streams
/// used by raw fsts (`(&[u8], Output)`).
///
/// If this were iterators, we could use `iter::Map`, but doing this on streams
/// requires HKT, so we need to write out the monomorphization ourselves.
struct StreamOutput<S>(S);

impl<'a, S> Streamer<'a> for StreamOutput<S>
where
    S: Streamer<'a, Item = (&'a [u8], u64)>,
{
    type Item = (&'a [u8], raw::Output);

    fn next(&'a mut self) -> Option<Self::Item> {
        self.0.next().map(|(k, v)| (k, raw::Output::new(v)))
    }
}

/// A lexicographically ordered stream of key-value from a map
/// along with the states of the automaton.
///
/// The `Stream` type is based on the `StreamWithState`.
pub struct StreamWithState<'m, A = AlwaysMatch>(raw::StreamWithState<'m, A>)
where
    A: Automaton;

impl<'a, 'm, A: 'a + Automaton> Streamer<'a> for StreamWithState<'m, A>
where
    A::State: Clone,
{
    type Item = (&'a [u8], u64, A::State);

    fn next(&'a mut self) -> Option<Self::Item> {
        self.0
            .next()
            .map(|(key, out, state)| (key, out.value(), state))
    }
}