1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/*! Operations on raw finite state transducers. This sub-module exposes the guts of a finite state transducer. Many parts of it, such as construction and traversal, are mirrored in the `set` and `map` sub-modules. Other parts of it, such as direct access to nodes and transitions in the transducer, do not have any analog. # Overview of types `Fst` is a read only interface to pre-constructed finite state transducers. `Node` is a read only interface to a single node in a transducer. `Builder` is used to create new finite state transducers. (Once a transducer is created, it can never be modified.) `Stream` is a stream of all inputs and outputs in a transducer. `StreamBuilder` builds range queries. `OpBuilder` collects streams and executes set operations like `union` or `intersection` on them with the option of specifying a merge strategy for output values. Most of the rest of the types are streams from set operations. */ use std::fmt; use std::ops::Deref; use std::{cmp, mem}; use byteorder::{LittleEndian, ReadBytesExt}; use crate::automaton::{AlwaysMatch, Automaton}; use crate::error::Result; use crate::stream::{IntoStreamer, Streamer}; pub use self::build::Builder; pub use self::error::Error; use self::node::node_new; pub use self::node::{Node, Transitions}; pub use self::ops::{ Difference, IndexedValue, Intersection, OpBuilder, SymmetricDifference, Union, }; mod build; mod common_inputs; mod counting_writer; mod error; mod node; mod ops; mod pack; mod registry; mod registry_minimal; #[cfg(test)] mod tests; /// The API version of this crate. /// /// This version number is written to every finite state transducer created by /// this crate. When a finite state transducer is read, its version number is /// checked against this value. /// /// Currently, any version mismatch results in an error. Fixing this requires /// regenerating the finite state transducer or switching to a version of this /// crate that is compatible with the serialized transducer. This particular /// behavior may be relaxed in future versions. pub const VERSION: u64 = 2; /// A sentinel value used to indicate an empty final state. const EMPTY_ADDRESS: CompiledAddr = 0; /// A sentinel value used to indicate an invalid state. /// /// This is never the address of a node in a serialized transducer. const NONE_ADDRESS: CompiledAddr = 1; /// Default capacity for the key buffer of a stream. const KEY_BUFFER_CAPACITY: usize = 128; /// FstType is a convention used to indicate the type of the underlying /// transducer. /// /// This crate reserves the range 0-255 (inclusive) but currently leaves the /// meaning of 0-255 unspecified. pub type FstType = u64; /// CompiledAddr is the type used to address nodes in a finite state /// transducer. /// /// It is most useful as a pointer to nodes. It can be used in the `Fst::node` /// method to resolve the pointer. pub type CompiledAddr = usize; /// An acyclic deterministic finite state transducer. /// /// # How does it work? /// /// The short answer: it's just like a prefix trie, which compresses keys /// based only on their prefixes, except that a automaton/transducer also /// compresses suffixes. /// /// The longer answer is that keys in an automaton are stored only in the /// transitions from one state to another. A key can be acquired by tracing /// a path from the root of the automaton to any match state. The inputs along /// each transition are concatenated. Once a match state is reached, the /// concatenation of inputs up until that point corresponds to a single key. /// /// But why is it called a transducer instead of an automaton? A finite state /// transducer is just like a finite state automaton, except that it has output /// transitions in addition to input transitions. Namely, the value associated /// with any particular key is determined by summing the outputs along every /// input transition that leads to the key's corresponding match state. /// /// This is best demonstrated with a couple images. First, let's ignore the /// "transducer" aspect and focus on a plain automaton. /// /// Consider that your keys are abbreviations of some of the months in the /// Gregorian calendar: /// /// ```ignore /// jan /// feb /// mar /// apr /// may /// jun /// jul /// ``` /// /// The corresponding automaton that stores all of these as keys looks like /// this: /// /// ![finite state automaton](http://burntsushi.net/stuff/months-set.png) /// /// Notice here how the prefix and suffix of `jan` and `jun` are shared. /// Similarly, the prefixes of `jun` and `jul` are shared and the prefixes /// of `mar` and `may` are shared. /// /// All of the keys from this automaton can be enumerated in lexicographic /// order by following every transition from each node in lexicographic /// order. Since it is acyclic, the procedure will terminate. /// /// A key can be found by tracing it through the transitions in the automaton. /// For example, the key `aug` is known not to be in the automaton by only /// visiting the root state (because there is no `a` transition). For another /// example, the key `jax` is known not to be in the set only after moving /// through the transitions for `j` and `a`. Namely, after those transitions /// are followed, there are no transitions for `x`. /// /// Notice here that looking up a key is proportional the length of the key /// itself. Namely, lookup time is not affected by the number of keys in the /// automaton! /// /// Additionally, notice that the automaton exploits the fact that many keys /// share common prefixes and suffixes. For example, `jun` and `jul` are /// represented with no more states than would be required to represent either /// one on its own. Instead, the only change is a single extra transition. This /// is a form of compression and is key to how the automatons produced by this /// crate are so small. /// /// Let's move on to finite state transducers. Consider the same set of keys /// as above, but let's assign their numeric month values: /// /// ```ignore /// jan,1 /// feb,2 /// mar,3 /// apr,4 /// may,5 /// jun,6 /// jul,7 /// ``` /// /// The corresponding transducer looks very similar to the automaton above, /// except outputs have been added to some of the transitions: /// /// ![finite state transducer](http://burntsushi.net/stuff/months-map.png) /// /// All of the operations with a transducer are the same as described above /// for automatons. Additionally, the same compression techniques are used: /// common prefixes and suffixes in keys are exploited. /// /// The key difference is that some transitions have been given an output. /// As one follows input transitions, one must sum the outputs as they /// are seen. (A transition with no output represents the additive identity, /// or `0` in this case.) For example, when looking up `feb`, the transition /// `f` has output `2`, the transition `e` has output `0`, and the transition /// `b` also has output `0`. The sum of these is `2`, which is exactly the /// value we associated with `feb`. /// /// For another more interesting example, consider `jul`. The `j` transition /// has output `1`, the `u` transition has output `5` and the `l` transition /// has output `1`. Summing these together gets us `7`, which is again the /// correct value associated with `jul`. Notice that if we instead looked up /// the `jun` key, then the `n` transition would be followed instead of the /// `l` transition, which has no output. Therefore, the `jun` key equals /// `1+5+0=6`. /// /// The trick to transducers is that there exists a unique path through the /// transducer for every key, and its outputs are stored appropriately along /// this path such that the correct value is returned when they are all summed /// together. This process also enables the data that makes up each value to be /// shared across many values in the transducer in exactly the same way that /// keys are shared. This is yet another form of compression! /// /// # Bonus: a billion strings /// /// The amount of compression one can get from automata can be absolutely /// ridiuclous. Consider the particular case of storing all billion strings /// in the range `0000000001-1000000000`, e.g., /// /// ```ignore /// 0000000001 /// 0000000002 /// ... /// 0000000100 /// 0000000101 /// ... /// 0999999999 /// 1000000000 /// ``` /// /// The corresponding automaton looks like this: /// /// ![finite state automaton - one billion strings] /// (http://burntsushi.net/stuff/one-billion.png) /// /// Indeed, the on disk size of this automaton is a mere **251 bytes**. /// /// Of course, this is a bit of a pathological best case, but it does serve /// to show how good compression can be in the optimal case. /// /// Also, check out the /// [corresponding transducer](http://burntsushi.net/stuff/one-billion-map.svg) /// that maps each string to its integer value. It's a bit bigger, but still /// only takes up **896 bytes** of space on disk. This demonstrates that /// output values are also compressible. /// /// # Does this crate produce minimal transducers? /// /// For any non-trivial sized set of keys, it is unlikely that this crate will /// produce a minimal transducer. As far as this author knows, guaranteeing a /// minimal transducer requires working memory proportional to the number of /// states. This can be quite costly and is anathema to the main design goal of /// this crate: provide the ability to work with gigantic sets of strings with /// constant memory overhead. /// /// Instead, construction of a finite state transducer uses a cache of /// states. More frequently used states are cached and reused, which provides /// reasonably good compression ratios. (No comprehensive benchmarks exist to /// back up this claim.) /// /// It is possible that this crate may expose a way to guarantee minimal /// construction of transducers at the expense of exorbitant memory /// requirements. /// /// # Bibliography /// /// I initially got the idea to use finite state tranducers to represent /// ordered sets/maps from /// [Michael /// McCandless'](http://blog.mikemccandless.com/2010/12/using-finite-state-transducers-in.html) /// work on incorporating transducers in Lucene. /// /// However, my work would also not have been possible without the hard work /// of many academics, especially /// [Jan Daciuk](http://galaxy.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/). /// /// * [Incremental construction of minimal acyclic finite-state automata](http://www.mitpressjournals.org/doi/pdfplus/10.1162/089120100561601) /// (Section 3 provides a decent overview of the algorithm used to construct /// transducers in this crate, assuming all outputs are `0`.) /// * [Direct Construction of Minimal Acyclic Subsequential Transducers](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.3698&rep=rep1&type=pdf) /// (The whole thing. The proof is dense but illuminating. The algorithm at /// the end is the money shot, namely, it incorporates output values.) /// * [Experiments with Automata Compression](http://www.researchgate.net/profile/Jii_Dvorsky/publication/221568039_Word_Random_Access_Compression/links/0c96052c095630d5b3000000.pdf#page=116), [Smaller Representation of Finite State Automata](http://www.cs.put.poznan.pl/dweiss/site/publications/download/fsacomp.pdf) /// (various compression techniques for representing states/transitions) /// * [Jan Daciuk's dissertation](http://www.pg.gda.pl/~jandac/thesis.ps.gz) /// (excellent for in depth overview) /// * [Comparison of Construction Algorithms for Minimal, Acyclic, Deterministic, Finite-State Automata from Sets of Strings](http://www.cs.mun.ca/~harold/Courses/Old/CS4750/Diary/q3p2qx4lv71m5vew.pdf) /// (excellent for surface level overview) pub struct Fst<Data = Vec<u8>> { meta: FstMeta, data: Data, } struct FstMeta { version: u64, root_addr: CompiledAddr, ty: FstType, len: usize, } impl FstMeta { #[inline(always)] fn root<'f>(&self, data: &'f [u8]) -> Node<'f> { self.node(self.root_addr, data) } #[inline(always)] fn node<'f>(&self, addr: CompiledAddr, data: &'f [u8]) -> Node<'f> { node_new(self.version, addr, data) } fn empty_final_output(&self, data: &[u8]) -> Option<Output> { let root = self.root(data); if root.is_final() { Some(root.final_output()) } else { None } } } impl<Data: Deref<Target = [u8]>> Fst<Data> { /// Open a `Fst` from a given data. pub fn new(data: Data) -> Result<Fst<Data>> { if data.len() < 32 { return Err(Error::Format.into()); } // The read_u64 unwraps below are OK because they can never fail. // They can only fail when there is an IO error or if there is an // unexpected EOF. However, we are reading from a byte slice (no // IO errors possible) and we've confirmed the byte slice is at least // N bytes (no unexpected EOF). let version = (&*data).read_u64::<LittleEndian>().unwrap(); if version == 0 || version > VERSION { return Err(Error::Version { expected: VERSION, got: version, } .into()); } let ty = (&data[8..]).read_u64::<LittleEndian>().unwrap(); let root_addr = { let mut last = &data[data.len() - 8..]; u64_to_usize(last.read_u64::<LittleEndian>().unwrap()) }; let len = { let mut last2 = &data[data.len() - 16..]; u64_to_usize(last2.read_u64::<LittleEndian>().unwrap()) }; // The root node is always the last node written, so its address should // be near the end. After the root node is written, we still have to // write the root *address* and the number of keys in the FST. // That's 16 bytes. The extra byte comes from the fact that the root // address points to the last byte in the root node, rather than the // byte immediately following the root node. // // If this check passes, it is still possible that the FST is invalid // but probably unlikely. If this check reports a false positive, then // the program will probably panic. In the worst case, the FST will // operate but be subtly wrong. (This would require the bytes to be in // a format expected by an FST, which is incredibly unlikely.) // // The special check for EMPTY_ADDRESS is needed since an empty FST // has a root node that is empty and final, which means it has the // special address `0`. In that case, the FST is the smallest it can // be: the version, type, root address and number of nodes. That's // 32 bytes (8 byte u64 each). // // This is essentially our own little checksum. if (root_addr == EMPTY_ADDRESS && data.len() != 32) && root_addr + 17 != data.len() { return Err(Error::Format.into()); } Ok(Fst { data, meta: FstMeta { version, root_addr, ty, len, }, }) } /// Retrieves the value associated with a key. /// /// If the key does not exist, then `None` is returned. #[inline(never)] pub fn get<B: AsRef<[u8]>>(&self, key: B) -> Option<Output> { let mut node = self.root(); let mut out = Output::zero(); for &b in key.as_ref() { node = match node.find_input(b) { None => return None, Some(i) => { let t = node.transition(i); out = out.cat(t.out); self.node(t.addr) } } } if !node.is_final() { None } else { Some(out.cat(node.final_output())) } } /// Returns true if and only if the given key is in this FST. pub fn contains_key<B: AsRef<[u8]>>(&self, key: B) -> bool { let mut node = self.root(); for &b in key.as_ref() { node = match node.find_input(b) { None => return false, Some(i) => self.node(node.transition_addr(i)), } } node.is_final() } /// Return a lexicographically ordered stream of all key-value pairs in /// this fst. #[inline] pub fn stream(&self) -> Stream { self.stream_builder(AlwaysMatch).into_stream() } fn stream_builder<A: Automaton>(&self, aut: A) -> StreamBuilder<A> { StreamBuilder::new(&self.meta, &self.data, aut) } /// Return a builder for range queries. /// /// A range query returns a subset of key-value pairs in this fst in a /// range given in lexicographic order. #[inline] pub fn range(&self) -> StreamBuilder { self.stream_builder(AlwaysMatch) } /// Executes an automaton on the keys of this map. pub fn search<A: Automaton>(&self, aut: A) -> StreamBuilder<A> { self.stream_builder(aut) } /// Returns the number of keys in this fst. #[inline] pub fn len(&self) -> usize { self.meta.len } /// Returns true if and only if this fst has no keys. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the number of bytes used by this fst. #[inline] pub fn size(&self) -> usize { self.data.len() } /// Creates a new fst operation with this fst added to it. /// /// The `OpBuilder` type can be used to add additional fst streams /// and perform set operations like union, intersection, difference and /// symmetric difference on the keys of the fst. These set operations also /// allow one to specify how conflicting values are merged in the stream. #[inline] pub fn op(&self) -> OpBuilder { OpBuilder::default().add(self) } /// Returns true if and only if the `self` fst is disjoint with the fst /// `stream`. /// /// `stream` must be a lexicographically ordered sequence of byte strings /// with associated values. pub fn is_disjoint<'f, I, S>(&self, stream: I) -> bool where I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], Output)>, S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], Output)>, { self.op().add(stream).intersection().next().is_none() } /// Returns true if and only if the `self` fst is a subset of the fst /// `stream`. /// /// `stream` must be a lexicographically ordered sequence of byte strings /// with associated values. pub fn is_subset<'f, I, S>(&self, stream: I) -> bool where I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], Output)>, S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], Output)>, { let mut op = self.op().add(stream).intersection(); let mut count = 0; while let Some(_) = op.next() { count += 1; } count == self.len() } /// Returns true if and only if the `self` fst is a superset of the fst /// `stream`. /// /// `stream` must be a lexicographically ordered sequence of byte strings /// with associated values. pub fn is_superset<'f, I, S>(&self, stream: I) -> bool where I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], Output)>, S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], Output)>, { let mut op = self.op().add(stream).union(); let mut count = 0; while let Some(_) = op.next() { count += 1; } count == self.len() } /// Returns the underlying type of this fst. /// /// FstType is a convention used to indicate the type of the underlying /// transducer. /// /// This crate reserves the range 0-255 (inclusive) but currently leaves /// the meaning of 0-255 unspecified. #[inline] pub fn fst_type(&self) -> FstType { self.meta.ty } /// Returns the root node of this fst. #[inline(always)] pub fn root(&self) -> Node { self.meta.root(self.data.deref()) } /// Returns the node at the given address. /// /// Node addresses can be obtained by reading transitions on `Node` values. #[inline] pub fn node(&self, addr: CompiledAddr) -> Node { self.meta.node(addr, self.data.deref()) } /// Returns a copy of the binary contents of this FST. #[inline] pub fn to_vec(&self) -> Vec<u8> { self.data.to_vec() } } impl<'a, 'f, Data> IntoStreamer<'a> for &'f Fst<Data> where Data: Deref<Target = [u8]>, { type Item = (&'a [u8], Output); type Into = Stream<'f>; #[inline] fn into_stream(self) -> Self::Into { self.stream() } } /// A builder for constructing range queries on streams. /// /// Once all bounds are set, one should call `into_stream` to get a /// `Stream`. /// /// Bounds are not additive. That is, if `ge` is called twice on the same /// builder, then the second setting wins. /// /// The `A` type parameter corresponds to an optional automaton to filter /// the stream. By default, no filtering is done. /// /// The `'f` lifetime parameter refers to the lifetime of the underlying fst. pub struct StreamBuilder<'f, A = AlwaysMatch> { meta: &'f FstMeta, data: &'f [u8], aut: A, min: Bound, max: Bound, backward: bool, } impl<'f, A: Automaton> StreamBuilder<'f, A> { fn new(meta: &'f FstMeta, data: &'f [u8], aut: A) -> Self { StreamBuilder { meta, data, aut, min: Bound::Unbounded, max: Bound::Unbounded, backward: false, } } /// Specify a greater-than-or-equal-to bound. pub fn ge<T: AsRef<[u8]>>(mut self, bound: T) -> Self { self.min = Bound::Included(bound.as_ref().to_owned()); self } /// Specify a greater-than bound. pub fn gt<T: AsRef<[u8]>>(mut self, bound: T) -> Self { self.min = Bound::Excluded(bound.as_ref().to_owned()); self } /// Specify a less-than-or-equal-to bound. pub fn le<T: AsRef<[u8]>>(mut self, bound: T) -> Self { self.max = Bound::Included(bound.as_ref().to_owned()); self } /// Specify a less-than bound. pub fn lt<T: AsRef<[u8]>>(mut self, bound: T) -> Self { self.max = Bound::Excluded(bound.as_ref().to_owned()); self } /// Sets the `StreamBuilder` to stream the `(key, value)` backward. pub fn backward(mut self) -> Self { self.backward = true; self } /// Return this builder and gives the automaton states /// along with the results. pub fn with_state(self) -> StreamWithStateBuilder<'f, A> { StreamWithStateBuilder(self) } } impl<'a, 'f, A: Automaton> IntoStreamer<'a> for StreamBuilder<'f, A> { type Item = (&'a [u8], Output); type Into = Stream<'f, A>; fn into_stream(self) -> Stream<'f, A> { Stream::new( self.meta, self.data, self.aut, self.min, self.max, self.backward, ) } } /// A builder for constructing range queries of streams /// that returns results along with automaton states. /// /// Once all bounds are set, one should call `into_stream` to get a /// `StreamWithState`. /// /// Bounds are not additive. That is, if `ge` is called twice on the same /// builder, then the second setting wins. /// /// The `A` type parameter corresponds to an optional automaton to filter /// the stream. By default, no filtering is done. /// /// The `'f` lifetime parameter refers to the lifetime of the underlying fst. pub struct StreamWithStateBuilder<'f, A = AlwaysMatch>(StreamBuilder<'f, A>); impl<'a, 'f, A: 'a + Automaton> IntoStreamer<'a> for StreamWithStateBuilder<'f, A> where A::State: Clone, { type Item = (&'a [u8], Output, A::State); type Into = StreamWithState<'f, A>; fn into_stream(self) -> StreamWithState<'f, A> { StreamWithState::new( self.0.meta, self.0.data, self.0.aut, self.0.min, self.0.max, self.0.backward, ) } } #[derive(Clone, Debug)] enum Bound { Included(Vec<u8>), Excluded(Vec<u8>), Unbounded, } impl Bound { fn exceeded_by(&self, inp: &[u8]) -> bool { match *self { Bound::Included(ref v) => inp > v, Bound::Excluded(ref v) => inp >= v, Bound::Unbounded => false, } } fn subceeded_by(&self, inp: &[u8]) -> bool { match *self { Bound::Included(ref v) => inp < v, Bound::Excluded(ref v) => inp <= v, Bound::Unbounded => false, } } fn is_empty(&self) -> bool { match *self { Bound::Included(ref v) => v.is_empty(), Bound::Excluded(ref v) => v.is_empty(), Bound::Unbounded => true, } } fn is_inclusive(&self) -> bool { match *self { Bound::Excluded(_) => false, _ => true, } } } /// Stream of `key, value` not exposing the state of the automaton. pub struct Stream<'f, A = AlwaysMatch>(StreamWithState<'f, A>) where A: Automaton; impl<'f, A: Automaton> Stream<'f, A> { fn new( meta: &'f FstMeta, data: &'f [u8], aut: A, min: Bound, max: Bound, backward: bool, ) -> Self { Self(StreamWithState::new(meta, data, aut, min, max, backward)) } /// Convert this stream into a vector of byte strings and outputs. /// /// Note that this creates a new allocation for every key in the stream. pub fn into_byte_vec(mut self) -> Vec<(Vec<u8>, u64)> { let mut vs = vec![]; while let Some((k, v)) = self.next() { vs.push((k.to_vec(), v.value())); } vs } /// Convert this stream into a vector of Unicode strings and outputs. /// /// If any key is not valid UTF-8, then iteration on the stream is stopped /// and a UTF-8 decoding error is returned. /// /// Note that this creates a new allocation for every key in the stream. pub fn into_str_vec(mut self) -> Result<Vec<(String, u64)>> { let mut vs = vec![]; while let Some((k, v)) = self.next() { let k = String::from_utf8(k.to_vec()).map_err(Error::from)?; vs.push((k, v.value())); } Ok(vs) } /// Convert this stream into a vector of byte strings. /// /// Note that this creates a new allocation for every key in the stream. pub fn into_byte_keys(mut self) -> Vec<Vec<u8>> { let mut vs = vec![]; while let Some((k, _)) = self.next() { vs.push(k.to_vec()); } vs } /// Convert this stream into a vector of Unicode strings. /// /// If any key is not valid UTF-8, then iteration on the stream is stopped /// and a UTF-8 decoding error is returned. /// /// Note that this creates a new allocation for every key in the stream. pub fn into_str_keys(mut self) -> Result<Vec<String>> { let mut vs = vec![]; while let Some((k, _)) = self.next() { let k = String::from_utf8(k.to_vec()).map_err(Error::from)?; vs.push(k); } Ok(vs) } /// Convert this stream into a vector of outputs. pub fn into_values(mut self) -> Vec<u64> { let mut vs = vec![]; while let Some((_, v)) = self.next() { vs.push(v.value()); } vs } } impl<'f, 'a, A: Automaton> Streamer<'a> for Stream<'f, A> { type Item = (&'a [u8], Output); fn next(&'a mut self) -> Option<Self::Item> { self.0.next(|_| ()).map(|(key, out, _)| (key, out)) } } /// A lexicographically ordered stream from an fst /// of key-value pairs along with the state of the automaton. /// /// The `A` type parameter corresponds to an optional automaton to filter /// the stream. By default, no filtering is done. /// /// The `'f` lifetime parameter refers to the lifetime of the underlying fst. #[derive(Clone)] pub struct StreamWithState<'f, A = AlwaysMatch> where A: Automaton, { fst: &'f FstMeta, data: &'f [u8], aut: A, inp: Buffer, empty_output: Option<Output>, stack: Vec<StreamState<'f, A::State>>, end_at: Bound, min: Bound, max: Bound, reversed: bool, } #[derive(Clone, Debug)] struct StreamState<'f, S> { node: Node<'f>, trans: usize, out: Output, aut_state: S, done: bool, // ('done' = true) means that there are no unexplored transitions in the current state. // 'trans' value should be ignored when done is true. } impl<'f, A: Automaton> StreamWithState<'f, A> { fn new( fst: &'f FstMeta, data: &'f [u8], aut: A, min: Bound, max: Bound, backward: bool, ) -> Self { let min_2 = min.clone(); let max_2 = max.clone(); let end_at: Bound = if !backward { max.clone() } else { min.clone() }; let mut stream = StreamWithState { fst, data, aut, inp: Buffer::new(), empty_output: None, stack: vec![], end_at, min: min_2, max: max_2, reversed: backward, }; stream.seek(&min, &max); stream } /// Seeks the underlying stream such that the next key to be read is the /// smallest key in the underlying fst that satisfies the given minimum /// bound. /// /// This theoretically should be straight-forward, but we need to make /// sure our stack is correct, which includes accounting for automaton /// states. fn seek(&mut self, min: &Bound, max: &Bound) { let start_bound = if self.reversed { &max } else { &min }; if min.is_empty() && min.is_inclusive() { self.empty_output = self.resolve_empty_output(min, max); } if start_bound.is_empty() { self.stack.clear(); let node = self.fst.root(self.data); let transition = self.starting_transition(&node); self.stack = vec![StreamState { node, trans: transition.unwrap_or_default(), out: Output::zero(), aut_state: self.aut.start(), done: transition.is_none(), }]; return; } let (key, inclusive) = match start_bound { Bound::Excluded(ref start_bound) => (start_bound, false), Bound::Included(ref start_bound) => (start_bound, true), Bound::Unbounded => unreachable!(), }; // At this point, we need to find the starting location of `min` in // the FST. However, as we search, we need to maintain a stack of // reader states so that the reader can pick up where we left off. // N.B. We do not necessarily need to stop in a final state, unlike // the one-off `find` method. For the example, the given bound might // not actually exist in the FST. let mut node = self.fst.root(self.data); let mut out = Output::zero(); let mut aut_state = self.aut.start(); for &b in key { match node.find_input(b) { Some(i) => { let t = node.transition(i); let prev_state = aut_state; aut_state = self.aut.accept(&prev_state, b); self.inp.push(b); let transition = self.next_transition(&node, i); self.stack.push(StreamState { node, trans: transition.unwrap_or_default(), out, aut_state: prev_state, done: transition.is_none(), }); out = out.cat(t.out); node = self.fst.node(t.addr, self.data); } None => { // This is a little tricky. We're in this case if the // given bound is not a prefix of any key in the FST. // Since this is a minimum bound, we need to find the // first transition in this node that proceeds the current // input byte. let trans = self.transition_within_bound(&node, b); self.stack.push(StreamState { node, trans: trans.unwrap_or_default(), out, aut_state, done: trans.is_none(), }); return; } } } if self.stack.is_empty() { return; } let last = self.stack.len() - 1; let state = &self.stack[last]; let transition = if !state.done { self.previous_transition(&state.node, state.trans) } else { self.last_transition(&state.node) }; if inclusive { self.stack[last].trans = transition.unwrap_or_default(); self.stack[last].done = transition.is_none(); self.inp.pop(); } else { let next_node = self.fst.node( state.node.transition(transition.unwrap_or_default()).addr, self.data, ); let starting_transition = self.starting_transition(&next_node); self.stack.push(StreamState { node: next_node, trans: starting_transition.unwrap_or_default(), out, aut_state, done: starting_transition.is_none(), }); } } #[inline] fn next<F, T>(&mut self, transform: F) -> Option<(&[u8], Output, T)> where F: Fn(&A::State) -> T, { if !self.reversed { // Inorder empty output (will be first). if let Some(out) = self.empty_output.take() { return Some((&[], out, transform(&self.aut.start()))); } } while let Some(state) = self.stack.pop() { if state.done || !self.aut.can_match(&state.aut_state) { if state.node.addr() != self.fst.root_addr { // Reversed return next logic. // If the stack is empty the value should not be returned. if self.reversed && !self.stack.is_empty() && state.node.is_final() { let out_of_bounds = self.min.subceeded_by(&self.inp) || self.max.exceeded_by(&self.inp); if !out_of_bounds && self.aut.is_match(&state.aut_state) { return Some((&self.inp.pop(), state.out, transform(&state.aut_state))); } } self.inp.pop(); } continue; } let trans = state.node.transition(state.trans); let out = state.out.cat(trans.out); let next_state = self.aut.accept(&state.aut_state, trans.inp); let is_match = self.aut.is_match(&next_state); let next_node = self.fst.node(trans.addr, self.data); self.inp.push(trans.inp); let current_transition = self.next_transition(&state.node, state.trans); self.stack.push(StreamState { trans: current_transition.unwrap_or_default(), done: current_transition.is_none(), ..state }); let ns = transform(&next_state); let next_transition = self.starting_transition(&next_node); self.stack.push(StreamState { node: next_node, trans: next_transition.unwrap_or_default(), out, aut_state: next_state, done: next_transition.is_none(), }); // Inorder return next logic. if !self.reversed { if self.end_at.exceeded_by(&self.inp) { // We are done, forever. self.stack.clear(); return None; } else if !self.reversed && next_node.is_final() && is_match { return Some((&self.inp, out.cat(next_node.final_output()), ns)); } } } // If we are streaming backward, we still need to return the empty output, if empty is // part of our fst, matches the range and the automaton self.empty_output .take() .map(|out| (&[][..], out, transform(&self.aut.start()))) } // The first transition that is in a bound for a given node. #[inline] fn transition_within_bound(&self, node: &Node<'f>, bound: u8) -> Option<usize> { let mut trans; if let Some(t) = self.starting_transition(&node) { trans = t; } else { return None; } loop { let transition = node.transition(trans); if (!self.reversed && transition.inp > bound) || (self.reversed && transition.inp < bound) { return Some(trans); } else if let Some(t) = self.next_transition(&node, trans) { trans = t; } else { return None; } } } /// Resolves value of the empty output. Will be none if the empty output should not be returned. #[inline] fn resolve_empty_output(&mut self, min: &Bound, max: &Bound) -> Option<Output> { if min.subceeded_by(&[]) || max.exceeded_by(&[]) { return None; } let start = self.aut.start(); if !self.aut.is_match(&start) { return None; } self.fst.empty_final_output(self.data) } #[inline] fn starting_transition(&self, node: &Node<'f>) -> Option<usize> { if node.is_empty() { None } else if !self.reversed { Some(0) } else { Some(node.len() - 1) } } #[inline] fn last_transition(&self, node: &Node<'f>) -> Option<usize> { if node.is_empty() { None } else if self.reversed { Some(0) } else { Some(node.len() - 1) } } /// Returns the next transition. /// /// The concept of `next` transition is dependent on whether the stream is in reverse mode or /// not. If all the transitions of this node have been emitted, this method returns None. #[inline] fn next_transition(&self, node: &Node<'f>, current_transition: usize) -> Option<usize> { if self.reversed { Self::backward_transition(node, current_transition) } else { Self::forward_transition(node, current_transition) } } /// See `StreamWithState::next_transition`. #[inline] fn previous_transition(&self, node: &Node<'f>, current_transition: usize) -> Option<usize> { if self.reversed { Self::forward_transition(node, current_transition) } else { Self::backward_transition(node, current_transition) } } /// Returns the next logical transition. /// /// This is independent from whether the stream is in backward mode or not. #[inline] fn forward_transition(node: &Node<'f>, current_transition: usize) -> Option<usize> { if current_transition + 1 < node.len() { Some(current_transition + 1) } else { None } } /// See [Stream::forward_transition]. #[inline] fn backward_transition(node: &Node<'f>, current_transition: usize) -> Option<usize> { if current_transition > 0 && !node.is_empty() { Some(current_transition - 1) } else { None } } } impl<'f, 'a, A: 'a + Automaton> Streamer<'a> for StreamWithState<'f, A> where A::State: Clone, { type Item = (&'a [u8], Output, A::State); fn next(&'a mut self) -> Option<Self::Item> { self.next(Clone::clone) } } /// An output is a value that is associated with a key in a finite state /// transducer. /// /// Note that outputs must satisfy an algebra. Namely, it must have an additive /// identity and the following binary operations defined: `prefix`, /// `concatenation` and `subtraction`. `prefix` and `concatenation` are /// commutative while `subtraction` is not. `subtraction` is only defined on /// pairs of operands where the first operand is greater than or equal to the /// second operand. /// /// Currently, output values must be `u64`. However, in theory, an output value /// can be anything that satisfies the above algebra. Future versions of this /// crate may make outputs generic on this algebra. #[derive(Copy, Clone, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)] pub struct Output(u64); #[derive(Clone)] struct Buffer { buf: Box<[u8]>, len: usize, } impl Buffer { fn new() -> Self { Buffer { buf: vec![0u8; KEY_BUFFER_CAPACITY].into_boxed_slice(), len: 0, } } fn capacity(&self) -> usize { self.buf.len() } fn double_cap(&mut self) { let old_cap = self.capacity(); let new_cap = old_cap * 2; let mut new_buf = vec![0u8; new_cap].into_boxed_slice(); new_buf[..old_cap].copy_from_slice(&self.buf[..old_cap]); mem::replace(&mut self.buf, new_buf); } fn push(&mut self, b: u8) { if self.capacity() <= self.len { self.double_cap(); } self.buf[self.len] = b; self.len += 1; } // Pops one byte and returns the entire chain before the byte was popped. fn pop(&mut self) -> &[u8] { let len = self.len; self.len = len - 1; &self.buf[..len] } } impl Deref for Buffer { type Target = [u8]; fn deref(&self) -> &[u8] { &self.buf[..self.len] } } impl Output { /// Create a new output from a `u64`. #[inline] pub fn new(v: u64) -> Output { Output(v) } /// Create a zero output. #[inline] pub fn zero() -> Output { Output(0) } /// Retrieve the value inside this output. #[inline] pub fn value(self) -> u64 { self.0 } /// Returns true if this is a zero output. #[inline] pub fn is_zero(self) -> bool { self.0 == 0 } /// Returns the prefix of this output and `o`. #[inline] pub fn prefix(self, o: Output) -> Output { Output(cmp::min(self.0, o.0)) } /// Returns the concatenation of this output and `o`. #[inline] pub fn cat(self, o: Output) -> Output { Output(self.0 + o.0) } /// Returns the subtraction of `o` from this output. /// /// This function panics if `self > o`. #[inline] pub fn sub(self, o: Output) -> Output { Output( self.0 .checked_sub(o.0) .expect("BUG: underflow subtraction not allowed"), ) } } /// A transition from one note to another. #[derive(Copy, Clone, Hash, Eq, PartialEq)] pub struct Transition { /// The byte input associated with this transition. pub inp: u8, /// The output associated with this transition. pub out: Output, /// The address of the node that this transition points to. pub addr: CompiledAddr, } impl Default for Transition { #[inline] fn default() -> Self { Transition { inp: 0, out: Output::zero(), addr: NONE_ADDRESS, } } } impl fmt::Debug for Transition { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self.out.is_zero() { write!(f, "{} -> {}", self.inp as char, self.addr) } else { write!( f, "({}, {}) -> {}", self.inp as char, self.out.value(), self.addr ) } } } #[inline] #[cfg(target_pointer_width = "64")] fn u64_to_usize(n: u64) -> usize { n as usize } #[inline] #[cfg(not(target_pointer_width = "64"))] fn u64_to_usize(n: u64) -> usize { if n > ::std::usize::MAX as u64 { panic!( "\ Cannot convert node address {} to a pointer sized variable. If this FST is very large and was generated on a system with a larger pointer size than this system, then it is not possible to read this FST on this system.", n ); } n as usize }