1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
use std::io::{self, Write};
use byteorder::{LittleEndian, WriteBytesExt};
use crate::error::Result;
use crate::raw::counting_writer::CountingWriter;
use crate::raw::error::Error;
use crate::raw::registry::{Registry, RegistryEntry};
use crate::raw::{CompiledAddr, FstType, Output, Transition, EMPTY_ADDRESS, NONE_ADDRESS, VERSION};
// use raw::registry_minimal::{Registry, RegistryEntry};
use crate::stream::{IntoStreamer, Streamer};
/// A builder for creating a finite state transducer.
///
/// This is not your average everyday builder. It has two important qualities
/// that make it a bit unique from what you might expect:
///
/// 1. All keys must be added in lexicographic order. Adding a key out of order
/// will result in an error. Additionally, adding a duplicate key with an
/// output value will also result in an error. That is, once a key is
/// associated with a value, that association can never be modified or
/// deleted.
/// 2. The representation of an fst is streamed to *any* `io::Write` as it is
/// built. For an in memory representation, this can be a `Vec<u8>`.
///
/// Point (2) is especially important because it means that an fst can be
/// constructed *without storing the entire fst in memory*. Namely, since it
/// works with any `io::Write`, it can be streamed directly to a file.
///
/// With that said, the builder does use memory, but **memory usage is bounded
/// to a constant size**. The amount of memory used trades off with the
/// compression ratio. Currently, the implementation hard codes this trade off
/// which can result in about 5-20MB of heap usage during construction. (N.B.
/// Guaranteeing a maximal compression ratio requires memory proportional to
/// the size of the fst, which defeats some of the benefit of streaming
/// it to disk. In practice, a small bounded amount of memory achieves
/// close-to-minimal compression ratios.)
///
/// The algorithmic complexity of fst construction is `O(n)` where `n` is the
/// number of elements added to the fst.
pub struct Builder<W> {
/// The FST raw data is written directly to `wtr`.
///
/// No internal buffering is done.
wtr: CountingWriter<W>,
/// The stack of unfinished nodes.
///
/// An unfinished node is a node that could potentially have a new
/// transition added to it when a new word is added to the dictionary.
unfinished: UnfinishedNodes,
/// A map of finished nodes.
///
/// A finished node is one that has been compiled and written to `wtr`.
/// After this point, the node is considered immutable and will never
/// Achange.
registry: Registry,
/// The last word added.
///
/// This is used to enforce the invariant that words are added in sorted
/// order.
last: Option<Vec<u8>>,
/// The address of the last compiled node.
///
/// This is used to optimize states with one transition that point
/// to the previously compiled node. (The previously compiled node in
/// this case actually corresponds to the next state for the transition,
/// since states are compiled in reverse.)
last_addr: CompiledAddr,
/// The number of keys added.
len: usize,
}
#[derive(Debug)]
struct UnfinishedNodes {
stack: Vec<BuilderNodeUnfinished>,
}
#[derive(Debug)]
struct BuilderNodeUnfinished {
node: BuilderNode,
last: Option<LastTransition>,
}
#[derive(Debug, Hash, Eq, PartialEq)]
pub struct BuilderNode {
pub is_final: bool,
pub final_output: Output,
pub trans: Vec<Transition>,
}
#[derive(Debug)]
struct LastTransition {
inp: u8,
out: Output,
}
impl Builder<Vec<u8>> {
/// Create a builder that builds an fst in memory.
#[inline]
pub fn memory() -> Self {
Builder::new(Vec::with_capacity(10 * (1 << 10))).unwrap()
}
}
impl<W: io::Write> Builder<W> {
/// Create a builder that builds an fst by writing it to `wtr` in a
/// streaming fashion.
pub fn new(wtr: W) -> Result<Builder<W>> {
Builder::new_type(wtr, 0)
}
/// The same as `new`, except it sets the type of the fst to the type
/// given.
pub fn new_type(wtr: W, ty: FstType) -> Result<Builder<W>> {
let mut wtr = CountingWriter::new(wtr);
// Don't allow any nodes to have address 0-7. We use these to encode
// the API version. We also use addresses `0` and `1` as special
// sentinel values, so they should never correspond to a real node.
wtr.write_u64::<LittleEndian>(VERSION)?;
// Similarly for 8-15 for the fst type.
wtr.write_u64::<LittleEndian>(ty)?;
Ok(Builder {
wtr,
unfinished: UnfinishedNodes::new(),
registry: Registry::new(10_000, 2),
last: None,
last_addr: NONE_ADDRESS,
len: 0,
})
}
/// Adds a byte string to this FST with a zero output value.
pub fn add<B>(&mut self, bs: B) -> Result<()>
where
B: AsRef<[u8]>,
{
self.check_last_key(bs.as_ref(), false)?;
self.insert_output(bs, None)
}
/// Insert a new key-value pair into the fst.
///
/// Keys must be convertible to byte strings. Values must be a `u64`, which
/// is a restriction of the current implementation of finite state
/// transducers. (Values may one day be expanded to other types.)
///
/// If a key is inserted that is less than or equal to any previous key
/// added, then an error is returned. Similarly, if there was a problem
/// writing to the underlying writer, an error is returned.
pub fn insert<B>(&mut self, bs: B, val: u64) -> Result<()>
where
B: AsRef<[u8]>,
{
self.check_last_key(bs.as_ref(), true)?;
self.insert_output(bs, Some(Output::new(val)))
}
/// Calls insert on each item in the iterator.
///
/// If an error occurred while adding an element, processing is stopped
/// and the error is returned.
///
/// If a key is inserted that is less than or equal to any previous key
/// added, then an error is returned. Similarly, if there was a problem
/// writing to the underlying writer, an error is returned.
pub fn extend_iter<T, I>(&mut self, iter: I) -> Result<()>
where
T: AsRef<[u8]>,
I: IntoIterator<Item = (T, Output)>,
{
for (key, out) in iter {
self.insert(key, out.value())?;
}
Ok(())
}
/// Calls insert on each item in the stream.
///
/// Note that unlike `extend_iter`, this is not generic on the items in
/// the stream.
///
/// If a key is inserted that is less than or equal to any previous key
/// added, then an error is returned. Similarly, if there was a problem
/// writing to the underlying writer, an error is returned.
pub fn extend_stream<'f, I, S>(&mut self, stream: I) -> Result<()>
where
I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], Output)>,
S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], Output)>,
{
let mut stream = stream.into_stream();
while let Some((key, out)) = stream.next() {
self.insert(key, out.value())?;
}
Ok(())
}
/// Finishes the construction of the fst and flushes the underlying
/// writer. After completion, the data written to `W` may be read using
/// one of `Fst`'s constructor methods.
pub fn finish(self) -> Result<()> {
self.into_inner()?;
Ok(())
}
/// Just like `finish`, except it returns the underlying writer after
/// flushing it.
pub fn into_inner(mut self) -> Result<W> {
self.compile_from(0)?;
let root_node = self.unfinished.pop_root();
let root_addr = self.compile(&root_node)?;
self.wtr.write_u64::<LittleEndian>(self.len as u64)?;
self.wtr.write_u64::<LittleEndian>(root_addr as u64)?;
self.wtr.flush()?;
Ok(self.wtr.into_inner())
}
fn insert_output<B>(&mut self, bs: B, out: Option<Output>) -> Result<()>
where
B: AsRef<[u8]>,
{
let bs = bs.as_ref();
if bs.is_empty() {
self.len = 1; // must be first key, so length is always 1
self.unfinished
.set_root_output(out.unwrap_or_else(Output::zero));
return Ok(());
}
let (prefix_len, out) = if let Some(out) = out {
self.unfinished.find_common_prefix_and_set_output(bs, out)
} else {
(self.unfinished.find_common_prefix(bs), Output::zero())
};
if prefix_len == bs.len() {
// If the prefix found consumes the entire set of bytes, then
// the prefix *equals* the bytes given. This means it is a
// duplicate value with no output. So we can give up here.
//
// If the below assert fails, then that means we let a duplicate
// value through even when inserting outputs.
assert!(out.is_zero());
return Ok(());
}
self.len += 1;
self.compile_from(prefix_len)?;
self.unfinished.add_suffix(&bs[prefix_len..], out);
Ok(())
}
fn compile_from(&mut self, istate: usize) -> Result<()> {
let mut addr = NONE_ADDRESS;
while istate + 1 < self.unfinished.len() {
let node = if addr == NONE_ADDRESS {
self.unfinished.pop_empty()
} else {
self.unfinished.pop_freeze(addr)
};
addr = self.compile(&node)?;
assert_ne!(addr, NONE_ADDRESS);
}
self.unfinished.top_last_freeze(addr);
Ok(())
}
#[inline]
fn compile(&mut self, node: &BuilderNode) -> Result<CompiledAddr> {
if node.is_final && node.trans.is_empty() && node.final_output.is_zero() {
return Ok(EMPTY_ADDRESS);
}
let entry = self.registry.entry(&node);
if let RegistryEntry::Found(ref addr) = entry {
return Ok(*addr);
}
let start_addr = self.wtr.count() as CompiledAddr;
node.compile_to(&mut self.wtr, self.last_addr, start_addr)?;
self.last_addr = self.wtr.count() as CompiledAddr - 1;
if let RegistryEntry::NotFound(cell) = entry {
cell.insert(self.last_addr);
}
Ok(self.last_addr)
}
fn check_last_key(&mut self, bs: &[u8], check_dupe: bool) -> Result<()> {
if let Some(ref mut last) = self.last {
if check_dupe && bs == &**last {
return Err(Error::DuplicateKey { got: bs.to_vec() }.into());
}
if bs < &**last {
return Err(Error::OutOfOrder {
previous: last.to_vec(),
got: bs.to_vec(),
}
.into());
}
last.clear();
for &b in bs {
last.push(b);
}
} else {
self.last = Some(bs.to_vec());
}
Ok(())
}
/// Gets a reference to the underlying writer.
pub fn get_ref(&self) -> &W {
self.wtr.get_ref()
}
/// Returns the number of bytes written to the underlying writer
pub fn bytes_written(&self) -> u64 {
self.wtr.count()
}
}
impl UnfinishedNodes {
fn new() -> UnfinishedNodes {
let mut unfinished = UnfinishedNodes {
stack: Vec::with_capacity(64),
};
unfinished.push_empty(false);
unfinished
}
fn len(&self) -> usize {
self.stack.len()
}
fn push_empty(&mut self, is_final: bool) {
self.stack.push(BuilderNodeUnfinished {
node: BuilderNode {
is_final,
..BuilderNode::default()
},
last: None,
});
}
fn pop_root(&mut self) -> BuilderNode {
assert_eq!(self.stack.len(), 1);
assert!(self.stack[0].last.is_none());
self.stack.pop().unwrap().node
}
fn pop_freeze(&mut self, addr: CompiledAddr) -> BuilderNode {
let mut unfinished = self.stack.pop().unwrap();
unfinished.last_compiled(addr);
unfinished.node
}
fn pop_empty(&mut self) -> BuilderNode {
let unfinished = self.stack.pop().unwrap();
assert!(unfinished.last.is_none());
unfinished.node
}
fn set_root_output(&mut self, out: Output) {
self.stack[0].node.is_final = true;
self.stack[0].node.final_output = out;
}
fn top_last_freeze(&mut self, addr: CompiledAddr) {
let last = self.stack.len().checked_sub(1).unwrap();
self.stack[last].last_compiled(addr);
}
fn add_suffix(&mut self, bs: &[u8], out: Output) {
if bs.is_empty() {
return;
}
let last = self.stack.len().checked_sub(1).unwrap();
assert!(self.stack[last].last.is_none());
self.stack[last].last = Some(LastTransition { inp: bs[0], out });
for &b in &bs[1..] {
self.stack.push(BuilderNodeUnfinished {
node: BuilderNode::default(),
last: Some(LastTransition {
inp: b,
out: Output::zero(),
}),
});
}
self.push_empty(true);
}
fn find_common_prefix(&mut self, bs: &[u8]) -> usize {
bs.iter()
.zip(&self.stack)
.take_while(|&(&b, ref node)| node.last.as_ref().map(|t| t.inp == b).unwrap_or(false))
.count()
}
fn find_common_prefix_and_set_output(&mut self, bs: &[u8], mut out: Output) -> (usize, Output) {
let mut i = 0;
while i < bs.len() {
let add_prefix = match self.stack[i].last.as_mut() {
Some(ref mut t) if t.inp == bs[i] => {
i += 1;
let common_pre = t.out.prefix(out);
let add_prefix = t.out.sub(common_pre);
out = out.sub(common_pre);
t.out = common_pre;
add_prefix
}
_ => break,
};
if !add_prefix.is_zero() {
self.stack[i].add_output_prefix(add_prefix);
}
}
(i, out)
}
}
impl BuilderNodeUnfinished {
fn last_compiled(&mut self, addr: CompiledAddr) {
if let Some(trans) = self.last.take() {
self.node.trans.push(Transition {
inp: trans.inp,
out: trans.out,
addr,
});
}
}
fn add_output_prefix(&mut self, prefix: Output) {
if self.node.is_final {
self.node.final_output = prefix.cat(self.node.final_output);
}
for t in &mut self.node.trans {
t.out = prefix.cat(t.out);
}
if let Some(ref mut t) = self.last {
t.out = prefix.cat(t.out);
}
}
}
impl Clone for BuilderNode {
fn clone(&self) -> Self {
BuilderNode {
is_final: self.is_final,
final_output: self.final_output,
trans: self.trans.clone(),
}
}
fn clone_from(&mut self, source: &Self) {
self.is_final = source.is_final;
self.final_output = source.final_output;
self.trans.clear();
self.trans.extend(source.trans.iter());
}
}
impl Default for BuilderNode {
fn default() -> Self {
BuilderNode {
is_final: false,
final_output: Output::zero(),
trans: vec![],
}
}
}