1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
use self::StartsWithStateInternal::*;
/// Automaton describes types that behave as a finite automaton.
///
/// All implementors of this trait are represented by *byte based* automata.
/// Stated differently, all transitions in the automata correspond to a single
/// byte in the input.
///
/// This implementation choice is important for a couple reasons:
///
/// 1. The set of possible transitions in each node is small, which may make
/// efficient memory usage easier.
/// 2. The finite state transducers in this crate are all byte based, so any
/// automata used on them must also be byte based.
///
/// In practice, this does present somewhat of a problem, for example, if
/// you're storing UTF-8 encoded strings in a finite state transducer. Consider
/// using a `Levenshtein` automaton, which accepts a query string and an edit
/// distance. The edit distance should apply to some notion of *character*,
/// which could be represented by at least 1-4 bytes in a UTF-8 encoding (for
/// some definition of "character"). Therefore, the automaton must have UTF-8
/// decoding built into it. This can be tricky to implement, so you may find
/// the [`utf8-ranges`](https://crates.io/crates/utf8-ranges) crate useful.
pub trait Automaton {
/// The type of the state used in the automaton.
type State;
/// Returns a single start state for this automaton.
///
/// This method should always return the same value for each
/// implementation.
fn start(&self) -> Self::State;
/// Returns true if and only if `state` is a match state.
fn is_match(&self, state: &Self::State) -> bool;
/// Returns true if and only if `state` can lead to a match in zero or more
/// steps.
///
/// If this returns `false`, then no sequence of inputs from this state
/// should ever produce a match. If this does not follow, then those match
/// states may never be reached. In other words, behavior may be incorrect.
///
/// If this returns `true` even when no match is possible, then behavior
/// will be correct, but callers may be forced to do additional work.
fn can_match(&self, _state: &Self::State) -> bool {
true
}
/// Returns true if and only if `state` matches and must match no matter
/// what steps are taken.
///
/// If this returns `true`, then every sequence of inputs from this state
/// produces a match. If this does not follow, then those match states may
/// never be reached. In other words, behavior may be incorrect.
///
/// If this returns `false` even when every sequence of inputs will lead to
/// a match, then behavior will be correct, but callers may be forced to do
/// additional work.
fn will_always_match(&self, _state: &Self::State) -> bool {
false
}
/// Return the next state given `state` and an input.
fn accept(&self, state: &Self::State, byte: u8) -> Self::State;
/// Returns an automaton that matches the strings that start with something
/// this automaton matches.
fn starts_with(self) -> StartsWith<Self>
where
Self: Sized,
{
StartsWith(self)
}
/// Returns an automaton that matches the strings matched by either this or
/// the other automaton.
fn union<Rhs: Automaton>(self, rhs: Rhs) -> Union<Self, Rhs>
where
Self: Sized,
{
Union(self, rhs)
}
/// Returns an automaton that matches the strings matched by both this and
/// the other automaton.
fn intersection<Rhs: Automaton>(self, rhs: Rhs) -> Intersection<Self, Rhs>
where
Self: Sized,
{
Intersection(self, rhs)
}
/// Returns an automaton that matches the strings not matched by this
/// automaton.
fn complement(self) -> Complement<Self>
where
Self: Sized,
{
Complement(self)
}
}
impl<'a, T: Automaton> Automaton for &'a T {
type State = T::State;
fn start(&self) -> Self::State {
(*self).start()
}
fn is_match(&self, state: &Self::State) -> bool {
(*self).is_match(state)
}
fn can_match(&self, state: &Self::State) -> bool {
(*self).can_match(state)
}
fn will_always_match(&self, state: &Self::State) -> bool {
(*self).will_always_match(state)
}
fn accept(&self, state: &Self::State, byte: u8) -> Self::State {
(*self).accept(state, byte)
}
}
/// An automaton that matches if the input contains a specific subsequence.
#[derive(Clone, Debug)]
pub struct Subsequence<'a> {
subseq: &'a [u8],
}
impl<'a> Subsequence<'a> {
/// Constructs automaton that matches input containing the
/// specified subsequence.
#[inline]
pub fn new(subsequence: &'a str) -> Subsequence<'a> {
Subsequence {
subseq: subsequence.as_bytes(),
}
}
}
impl<'a> Automaton for Subsequence<'a> {
type State = usize;
#[inline]
fn start(&self) -> usize {
0
}
#[inline]
fn is_match(&self, &state: &usize) -> bool {
state == self.subseq.len()
}
#[inline]
fn can_match(&self, _: &usize) -> bool {
true
}
#[inline]
fn will_always_match(&self, &state: &usize) -> bool {
state == self.subseq.len()
}
#[inline]
fn accept(&self, &state: &usize, byte: u8) -> usize {
if state == self.subseq.len() {
return state;
}
state + (byte == self.subseq[state]) as usize
}
}
/// An automaton that always matches.
///
/// This is useful in a generic context as a way to express that no automaton
/// should be used.
#[derive(Clone, Debug)]
pub struct AlwaysMatch;
impl Automaton for AlwaysMatch {
type State = ();
#[inline]
fn start(&self) {}
#[inline]
fn is_match(&self, _: &()) -> bool {
true
}
#[inline]
fn can_match(&self, _: &()) -> bool {
true
}
#[inline]
fn will_always_match(&self, _: &()) -> bool {
true
}
#[inline]
fn accept(&self, _: &(), _: u8) {}
}
/// An automaton that matches a string that begins with something that the
/// wrapped automaton matches.
#[derive(Clone, Debug)]
pub struct StartsWith<A>(A);
/// The `Automaton` state for `StartsWith<A>`.
pub struct StartsWithState<A: Automaton>(StartsWithStateInternal<A>);
enum StartsWithStateInternal<A: Automaton> {
Done,
Running(A::State),
}
impl<A: Automaton> Automaton for StartsWith<A> {
type State = StartsWithState<A>;
fn start(&self) -> StartsWithState<A> {
StartsWithState({
let inner = self.0.start();
if self.0.is_match(&inner) {
Done
} else {
Running(inner)
}
})
}
fn is_match(&self, state: &StartsWithState<A>) -> bool {
match state.0 {
Done => true,
Running(_) => false,
}
}
fn can_match(&self, state: &StartsWithState<A>) -> bool {
match state.0 {
Done => true,
Running(ref inner) => self.0.can_match(inner),
}
}
fn will_always_match(&self, state: &StartsWithState<A>) -> bool {
match state.0 {
Done => true,
Running(_) => false,
}
}
fn accept(&self, state: &StartsWithState<A>, byte: u8) -> StartsWithState<A> {
StartsWithState(match state.0 {
Done => Done,
Running(ref inner) => {
let next_inner = self.0.accept(inner, byte);
if self.0.is_match(&next_inner) {
Done
} else {
Running(next_inner)
}
}
})
}
}
/// An automaton that matches when one of its component automata match.
#[derive(Clone, Debug)]
pub struct Union<A, B>(A, B);
/// The `Automaton` state for `Union<A, B>`.
pub struct UnionState<A: Automaton, B: Automaton>(A::State, B::State);
impl<A: Automaton, B: Automaton> Automaton for Union<A, B> {
type State = UnionState<A, B>;
fn start(&self) -> UnionState<A, B> {
UnionState(self.0.start(), self.1.start())
}
fn is_match(&self, state: &UnionState<A, B>) -> bool {
self.0.is_match(&state.0) || self.1.is_match(&state.1)
}
fn can_match(&self, state: &UnionState<A, B>) -> bool {
self.0.can_match(&state.0) || self.1.can_match(&state.1)
}
fn will_always_match(&self, state: &UnionState<A, B>) -> bool {
self.0.will_always_match(&state.0) || self.1.will_always_match(&state.1)
}
fn accept(&self, state: &UnionState<A, B>, byte: u8) -> UnionState<A, B> {
UnionState(self.0.accept(&state.0, byte), self.1.accept(&state.1, byte))
}
}
/// An automaton that matches when both of its component automata match.
#[derive(Clone, Debug)]
pub struct Intersection<A, B>(A, B);
/// The `Automaton` state for `Intersection<A, B>`.
pub struct IntersectionState<A: Automaton, B: Automaton>(A::State, B::State);
impl<A: Automaton, B: Automaton> Automaton for Intersection<A, B> {
type State = IntersectionState<A, B>;
fn start(&self) -> IntersectionState<A, B> {
IntersectionState(self.0.start(), self.1.start())
}
fn is_match(&self, state: &IntersectionState<A, B>) -> bool {
self.0.is_match(&state.0) && self.1.is_match(&state.1)
}
fn can_match(&self, state: &IntersectionState<A, B>) -> bool {
self.0.can_match(&state.0) && self.1.can_match(&state.1)
}
fn will_always_match(&self, state: &IntersectionState<A, B>) -> bool {
self.0.will_always_match(&state.0) && self.1.will_always_match(&state.1)
}
fn accept(&self, state: &IntersectionState<A, B>, byte: u8) -> IntersectionState<A, B> {
IntersectionState(self.0.accept(&state.0, byte), self.1.accept(&state.1, byte))
}
}
/// An automaton that matches exactly when the automaton it wraps does not.
#[derive(Clone, Debug)]
pub struct Complement<A>(A);
/// The `Automaton` state for `Complement<A>`.
pub struct ComplementState<A: Automaton>(A::State);
impl<A: Automaton> Automaton for Complement<A> {
type State = ComplementState<A>;
fn start(&self) -> ComplementState<A> {
ComplementState(self.0.start())
}
fn is_match(&self, state: &ComplementState<A>) -> bool {
!self.0.is_match(&state.0)
}
fn can_match(&self, state: &ComplementState<A>) -> bool {
!self.0.will_always_match(&state.0)
}
fn will_always_match(&self, state: &ComplementState<A>) -> bool {
!self.0.can_match(&state.0)
}
fn accept(&self, state: &ComplementState<A>, byte: u8) -> ComplementState<A> {
ComplementState(self.0.accept(&state.0, byte))
}
}