1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
use self::StartsWithStateInternal::*;

/// Automaton describes types that behave as a finite automaton.
///
/// All implementors of this trait are represented by *byte based* automata.
/// Stated differently, all transitions in the automata correspond to a single
/// byte in the input.
///
/// This implementation choice is important for a couple reasons:
///
/// 1. The set of possible transitions in each node is small, which may make
///    efficient memory usage easier.
/// 2. The finite state transducers in this crate are all byte based, so any
///    automata used on them must also be byte based.
///
/// In practice, this does present somewhat of a problem, for example, if
/// you're storing UTF-8 encoded strings in a finite state transducer. Consider
/// using a `Levenshtein` automaton, which accepts a query string and an edit
/// distance. The edit distance should apply to some notion of *character*,
/// which could be represented by at least 1-4 bytes in a UTF-8 encoding (for
/// some definition of "character"). Therefore, the automaton must have UTF-8
/// decoding built into it. This can be tricky to implement, so you may find
/// the [`utf8-ranges`](https://crates.io/crates/utf8-ranges) crate useful.
pub trait Automaton {
    /// The type of the state used in the automaton.
    type State;

    /// Returns a single start state for this automaton.
    ///
    /// This method should always return the same value for each
    /// implementation.
    fn start(&self) -> Self::State;

    /// Returns true if and only if `state` is a match state.
    fn is_match(&self, state: &Self::State) -> bool;

    /// Returns true if and only if `state` can lead to a match in zero or more
    /// steps.
    ///
    /// If this returns `false`, then no sequence of inputs from this state
    /// should ever produce a match. If this does not follow, then those match
    /// states may never be reached. In other words, behavior may be incorrect.
    ///
    /// If this returns `true` even when no match is possible, then behavior
    /// will be correct, but callers may be forced to do additional work.
    fn can_match(&self, _state: &Self::State) -> bool {
        true
    }

    /// Returns true if and only if `state` matches and must match no matter
    /// what steps are taken.
    ///
    /// If this returns `true`, then every sequence of inputs from this state
    /// produces a match. If this does not follow, then those match states may
    /// never be reached. In other words, behavior may be incorrect.
    ///
    /// If this returns `false` even when every sequence of inputs will lead to
    /// a match, then behavior will be correct, but callers may be forced to do
    /// additional work.
    fn will_always_match(&self, _state: &Self::State) -> bool {
        false
    }

    /// Return the next state given `state` and an input.
    fn accept(&self, state: &Self::State, byte: u8) -> Self::State;

    /// Returns an automaton that matches the strings that start with something
    /// this automaton matches.
    fn starts_with(self) -> StartsWith<Self>
    where
        Self: Sized,
    {
        StartsWith(self)
    }

    /// Returns an automaton that matches the strings matched by either this or
    /// the other automaton.
    fn union<Rhs: Automaton>(self, rhs: Rhs) -> Union<Self, Rhs>
    where
        Self: Sized,
    {
        Union(self, rhs)
    }

    /// Returns an automaton that matches the strings matched by both this and
    /// the other automaton.
    fn intersection<Rhs: Automaton>(self, rhs: Rhs) -> Intersection<Self, Rhs>
    where
        Self: Sized,
    {
        Intersection(self, rhs)
    }

    /// Returns an automaton that matches the strings not matched by this
    /// automaton.
    fn complement(self) -> Complement<Self>
    where
        Self: Sized,
    {
        Complement(self)
    }
}

impl<'a, T: Automaton> Automaton for &'a T {
    type State = T::State;

    fn start(&self) -> Self::State {
        (*self).start()
    }

    fn is_match(&self, state: &Self::State) -> bool {
        (*self).is_match(state)
    }

    fn can_match(&self, state: &Self::State) -> bool {
        (*self).can_match(state)
    }

    fn will_always_match(&self, state: &Self::State) -> bool {
        (*self).will_always_match(state)
    }

    fn accept(&self, state: &Self::State, byte: u8) -> Self::State {
        (*self).accept(state, byte)
    }
}

/// An automaton that matches if the input contains a specific subsequence.
#[derive(Clone, Debug)]
pub struct Subsequence<'a> {
    subseq: &'a [u8],
}

impl<'a> Subsequence<'a> {
    /// Constructs automaton that matches input containing the
    /// specified subsequence.
    #[inline]
    pub fn new(subsequence: &'a str) -> Subsequence<'a> {
        Subsequence {
            subseq: subsequence.as_bytes(),
        }
    }
}

impl<'a> Automaton for Subsequence<'a> {
    type State = usize;

    #[inline]
    fn start(&self) -> usize {
        0
    }

    #[inline]
    fn is_match(&self, &state: &usize) -> bool {
        state == self.subseq.len()
    }

    #[inline]
    fn can_match(&self, _: &usize) -> bool {
        true
    }

    #[inline]
    fn will_always_match(&self, &state: &usize) -> bool {
        state == self.subseq.len()
    }

    #[inline]
    fn accept(&self, &state: &usize, byte: u8) -> usize {
        if state == self.subseq.len() {
            return state;
        }
        state + (byte == self.subseq[state]) as usize
    }
}

/// An automaton that always matches.
///
/// This is useful in a generic context as a way to express that no automaton
/// should be used.
#[derive(Clone, Debug)]
pub struct AlwaysMatch;

impl Automaton for AlwaysMatch {
    type State = ();

    #[inline]
    fn start(&self) {}
    #[inline]
    fn is_match(&self, _: &()) -> bool {
        true
    }
    #[inline]
    fn can_match(&self, _: &()) -> bool {
        true
    }
    #[inline]
    fn will_always_match(&self, _: &()) -> bool {
        true
    }
    #[inline]
    fn accept(&self, _: &(), _: u8) {}
}

/// An automaton that matches a string that begins with something that the
/// wrapped automaton matches.
#[derive(Clone, Debug)]
pub struct StartsWith<A>(A);

/// The `Automaton` state for `StartsWith<A>`.
pub struct StartsWithState<A: Automaton>(StartsWithStateInternal<A>);

enum StartsWithStateInternal<A: Automaton> {
    Done,
    Running(A::State),
}

impl<A: Automaton> Automaton for StartsWith<A> {
    type State = StartsWithState<A>;

    fn start(&self) -> StartsWithState<A> {
        StartsWithState({
            let inner = self.0.start();
            if self.0.is_match(&inner) {
                Done
            } else {
                Running(inner)
            }
        })
    }

    fn is_match(&self, state: &StartsWithState<A>) -> bool {
        match state.0 {
            Done => true,
            Running(_) => false,
        }
    }

    fn can_match(&self, state: &StartsWithState<A>) -> bool {
        match state.0 {
            Done => true,
            Running(ref inner) => self.0.can_match(inner),
        }
    }

    fn will_always_match(&self, state: &StartsWithState<A>) -> bool {
        match state.0 {
            Done => true,
            Running(_) => false,
        }
    }

    fn accept(&self, state: &StartsWithState<A>, byte: u8) -> StartsWithState<A> {
        StartsWithState(match state.0 {
            Done => Done,
            Running(ref inner) => {
                let next_inner = self.0.accept(inner, byte);
                if self.0.is_match(&next_inner) {
                    Done
                } else {
                    Running(next_inner)
                }
            }
        })
    }
}

/// An automaton that matches when one of its component automata match.
#[derive(Clone, Debug)]
pub struct Union<A, B>(A, B);

/// The `Automaton` state for `Union<A, B>`.
pub struct UnionState<A: Automaton, B: Automaton>(A::State, B::State);

impl<A: Automaton, B: Automaton> Automaton for Union<A, B> {
    type State = UnionState<A, B>;

    fn start(&self) -> UnionState<A, B> {
        UnionState(self.0.start(), self.1.start())
    }

    fn is_match(&self, state: &UnionState<A, B>) -> bool {
        self.0.is_match(&state.0) || self.1.is_match(&state.1)
    }

    fn can_match(&self, state: &UnionState<A, B>) -> bool {
        self.0.can_match(&state.0) || self.1.can_match(&state.1)
    }

    fn will_always_match(&self, state: &UnionState<A, B>) -> bool {
        self.0.will_always_match(&state.0) || self.1.will_always_match(&state.1)
    }

    fn accept(&self, state: &UnionState<A, B>, byte: u8) -> UnionState<A, B> {
        UnionState(self.0.accept(&state.0, byte), self.1.accept(&state.1, byte))
    }
}

/// An automaton that matches when both of its component automata match.
#[derive(Clone, Debug)]
pub struct Intersection<A, B>(A, B);

/// The `Automaton` state for `Intersection<A, B>`.
pub struct IntersectionState<A: Automaton, B: Automaton>(A::State, B::State);

impl<A: Automaton, B: Automaton> Automaton for Intersection<A, B> {
    type State = IntersectionState<A, B>;

    fn start(&self) -> IntersectionState<A, B> {
        IntersectionState(self.0.start(), self.1.start())
    }

    fn is_match(&self, state: &IntersectionState<A, B>) -> bool {
        self.0.is_match(&state.0) && self.1.is_match(&state.1)
    }

    fn can_match(&self, state: &IntersectionState<A, B>) -> bool {
        self.0.can_match(&state.0) && self.1.can_match(&state.1)
    }

    fn will_always_match(&self, state: &IntersectionState<A, B>) -> bool {
        self.0.will_always_match(&state.0) && self.1.will_always_match(&state.1)
    }

    fn accept(&self, state: &IntersectionState<A, B>, byte: u8) -> IntersectionState<A, B> {
        IntersectionState(self.0.accept(&state.0, byte), self.1.accept(&state.1, byte))
    }
}

/// An automaton that matches exactly when the automaton it wraps does not.
#[derive(Clone, Debug)]
pub struct Complement<A>(A);

/// The `Automaton` state for `Complement<A>`.
pub struct ComplementState<A: Automaton>(A::State);

impl<A: Automaton> Automaton for Complement<A> {
    type State = ComplementState<A>;

    fn start(&self) -> ComplementState<A> {
        ComplementState(self.0.start())
    }

    fn is_match(&self, state: &ComplementState<A>) -> bool {
        !self.0.is_match(&state.0)
    }

    fn can_match(&self, state: &ComplementState<A>) -> bool {
        !self.0.will_always_match(&state.0)
    }

    fn will_always_match(&self, state: &ComplementState<A>) -> bool {
        !self.0.can_match(&state.0)
    }

    fn accept(&self, state: &ComplementState<A>, byte: u8) -> ComplementState<A> {
        ComplementState(self.0.accept(&state.0, byte))
    }
}