1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
use std::fmt;
use std::io;
use std::iter::FromIterator;
use crate::automaton::{AlwaysMatch, Automaton};
use crate::raw;
pub use crate::raw::IndexedValue;
use crate::raw::Output;
use crate::stream::{IntoStreamer, Streamer};
use crate::Result;
use std::ops::Deref;
/// Map is a lexicographically ordered map from byte strings to integers.
///
/// A `Map` is constructed with the `MapBuilder` type. Alternatively, a `Map`
/// can be constructed in memory from a lexicographically ordered iterator
/// of key-value pairs (`Map::from_iter`).
///
/// A key feature of `Map` is that it can be serialized to disk compactly. Its
/// underlying representation is built such that the `Map` can be memory mapped
/// (`Map::from_path`) and searched without necessarily loading the entire
/// map into memory.
///
/// It supports most common operations associated with maps, such as key
/// lookup and search. It also supports set operations on its keys along with
/// the ability to specify how conflicting values are merged together. Maps
/// also support range queries and automata based searches (e.g. a regular
/// expression).
///
/// Maps are represented by a finite state transducer where inputs are the keys
/// and outputs are the values. As such, maps have the following invariants:
///
/// 1. Once constructed, a `Map` can never be modified.
/// 2. Maps must be constructed with lexicographically ordered byte sequences.
/// There is no restricting on the ordering of values.
///
/// # Differences with sets
///
/// Maps and sets are represented by the same underlying data structure: the
/// finite state transducer. The principal difference between them is that
/// sets always have their output values set to `0`. This has an impact on the
/// representation size and is reflected in the type system for convenience.
/// A secondary but subtle difference is that duplicate values can be added
/// to a set, but it is an error to do so with maps. That is, a set can have
/// the same key added sequentially, but a map can't.
///
/// # The future
///
/// It is regrettable that the output value is fixed to `u64`. Indeed, it is
/// not necessary, but it was a major simplification in the implementation.
/// In the future, the value type may become generic to an extent (outputs must
/// satisfy a basic algebra).
///
/// Keys will always be byte strings; however, we may grow more conveniences
/// around dealing with them (such as a serialization/deserialization step,
/// although it isn't clear where exactly this should live).
pub struct Map<Data>(raw::Fst<Data>);
impl Map<Vec<u8>> {
/// Creates a map from its representation as a raw byte sequence.
///
/// Note that this operation is very cheap (no allocations and no copies).
///
/// The map must have been written with a compatible finite state
/// transducer builder (`MapBuilder` qualifies). If the format is invalid
/// or if there is a mismatch between the API version of this library
/// and the map, then an error is returned.
pub fn from_bytes(bytes: Vec<u8>) -> Result<Map<Vec<u8>>> {
raw::Fst::new(bytes).map(Map)
}
/// Create a `Map` from an iterator of lexicographically ordered byte
/// strings and associated values.
///
/// If the iterator does not yield unique keys in lexicographic order, then
/// an error is returned.
///
/// Note that this is a convenience function to build a map in memory.
/// To build a map that streams to an arbitrary `io::Write`, use
/// `MapBuilder`.
pub fn from_iter<K, I>(iter: I) -> Result<Self>
where
K: AsRef<[u8]>,
I: IntoIterator<Item = (K, u64)>,
{
let mut builder = MapBuilder::memory();
builder.extend_iter(iter)?;
Map::from_bytes(builder.into_inner()?)
}
}
impl<Data: Deref<Target = [u8]>> Map<Data> {
/// Tests the membership of a single key.
///
/// # Example
///
/// ```rust
/// use tantivy_fst::Map;
///
/// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
///
/// assert_eq!(map.contains_key("b"), true);
/// assert_eq!(map.contains_key("z"), false);
/// ```
pub fn contains_key<K: AsRef<[u8]>>(&self, key: K) -> bool {
self.0.contains_key(key)
}
/// Retrieves the value associated with a key.
///
/// If the key does not exist, then `None` is returned.
///
/// # Example
///
/// ```rust
/// use tantivy_fst::Map;
///
/// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
///
/// assert_eq!(map.get("b"), Some(2));
/// assert_eq!(map.get("z"), None);
/// ```
pub fn get<K: AsRef<[u8]>>(&self, key: K) -> Option<u64> {
self.0.get(key).map(|output| output.value())
}
/// Return a lexicographically ordered stream of all key-value pairs in
/// this map.
///
/// While this is a stream, it does require heap space proportional to the
/// longest key in the map.
///
/// If the map is memory mapped, then no further heap space is needed.
/// Note though that your operating system may fill your page cache
/// (which will cause the resident memory usage of the process to go up
/// correspondingly).
///
/// # Example
///
/// Since streams are not iterators, the traditional `for` loop cannot be
/// used. `while let` is useful instead:
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
///
/// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
/// let mut stream = map.stream();
///
/// let mut kvs = vec![];
/// while let Some((k, v)) = stream.next() {
/// kvs.push((k.to_vec(), v));
/// }
/// assert_eq!(kvs, vec![
/// (b"a".to_vec(), 1),
/// (b"b".to_vec(), 2),
/// (b"c".to_vec(), 3),
/// ]);
/// ```
#[inline]
pub fn stream(&self) -> Stream {
Stream(self.0.stream())
}
/// Return a lexicographically ordered stream of all keys in this map.
///
/// Memory requirements are the same as described on `Map::stream`.
///
/// # Example
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
///
/// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
/// let mut stream = map.keys();
///
/// let mut keys = vec![];
/// while let Some(k) = stream.next() {
/// keys.push(k.to_vec());
/// }
/// assert_eq!(keys, vec![b"a", b"b", b"c"]);
/// ```
#[inline]
pub fn keys(&self) -> Keys {
Keys(self.0.stream())
}
/// Return a stream of all values in this map ordered lexicographically
/// by each value's corresponding key.
///
/// Memory requirements are the same as described on `Map::stream`.
///
/// # Example
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
///
/// let map = Map::from_iter(vec![("a", 1), ("b", 2), ("c", 3)]).unwrap();
/// let mut stream = map.values();
///
/// let mut values = vec![];
/// while let Some(v) = stream.next() {
/// values.push(v);
/// }
/// assert_eq!(values, vec![1, 2, 3]);
/// ```
#[inline]
pub fn values(&self) -> Values {
Values(self.0.stream())
}
/// Return a builder for range queries.
///
/// A range query returns a subset of key-value pairs in this map in a
/// range given in lexicographic order.
///
/// Memory requirements are the same as described on `Map::stream`.
/// Notably, only the keys in the range are read; keys outside the range
/// are not.
///
/// # Example
///
/// Returns only the key-value pairs in the range given.
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
///
/// let map = Map::from_iter(vec![
/// ("a", 1), ("b", 2), ("c", 3), ("d", 4), ("e", 5),
/// ]).unwrap();
/// let mut stream = map.range().ge("b").lt("e").into_stream();
///
/// let mut kvs = vec![];
/// while let Some((k, v)) = stream.next() {
/// kvs.push((k.to_vec(), v));
/// }
/// assert_eq!(kvs, vec![
/// (b"b".to_vec(), 2),
/// (b"c".to_vec(), 3),
/// (b"d".to_vec(), 4),
/// ]);
/// ```
#[inline]
pub fn range(&self) -> StreamBuilder {
StreamBuilder(self.0.range())
}
/// Executes an automaton on the keys of this map.
///
/// Note that this returns a `StreamBuilder`, which can be used to
/// add a range query to the search (see the `range` method).
///
/// Memory requirements are the same as described on `Map::stream`.
///
/// # Example
///
/// An implementation of regular expressions for `Automaton` is available
/// in the `fst-regex` crate, which can be used to search maps.
///
/// ```rust
///
/// use std::error::Error;
///
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
/// #[cfg(feature = "regex")]
/// use tantivy_fst::Regex;
///
/// #[cfg(feature = "regex")]
/// {
/// let map = Map::from_iter(vec![
/// ("foo", 1), ("foo1", 2), ("foo2", 3), ("foo3", 4), ("foobar", 5),
/// ]).unwrap();
///
/// let re = Regex::new("f[a-z]+3?").unwrap();
/// let mut stream = map.search(&re).into_stream();
///
/// let mut kvs = vec![];
/// while let Some((k, v)) = stream.next() {
/// kvs.push((k.to_vec(), v));
/// }
/// assert_eq!(kvs, vec![
/// (b"foo".to_vec(), 1),
/// (b"foo3".to_vec(), 4),
/// (b"foobar".to_vec(), 5),
/// ]);
///
/// }
/// ```
pub fn search<A: Automaton>(&self, aut: A) -> StreamBuilder<A> {
StreamBuilder(self.0.search(aut))
}
/// Returns the number of elements in this map.
#[inline]
pub fn len(&self) -> usize {
self.0.len()
}
/// Returns true if and only if this map is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Creates a new map operation with this map added to it.
///
/// The `OpBuilder` type can be used to add additional map streams
/// and perform set operations like union, intersection, difference and
/// symmetric difference on the keys of the map. These set operations also
/// allow one to specify how conflicting values are merged in the stream.
///
/// # Example
///
/// This example demonstrates a union on multiple map streams. Notice that
/// the stream returned from the union is not a sequence of key-value
/// pairs, but rather a sequence of keys associated with one or more
/// values. Namely, a key is associated with each value associated with
/// that same key in the all of the streams.
///
/// ```rust
/// use tantivy_fst::{Streamer, Map};
/// use tantivy_fst::{map::IndexedValue};
///
/// let map1 = Map::from_iter(vec![
/// ("a", 1), ("b", 2), ("c", 3),
/// ]).unwrap();
/// let map2 = Map::from_iter(vec![
/// ("a", 10), ("y", 11), ("z", 12),
/// ]).unwrap();
///
/// let mut union = map1.op().add(&map2).union();
///
/// let mut kvs = vec![];
/// while let Some((k, vs)) = union.next() {
/// kvs.push((k.to_vec(), vs.to_vec()));
/// }
/// assert_eq!(kvs, vec![
/// (b"a".to_vec(), vec![
/// IndexedValue { index: 0, value: 1 },
/// IndexedValue { index: 1, value: 10 },
/// ]),
/// (b"b".to_vec(), vec![IndexedValue { index: 0, value: 2 }]),
/// (b"c".to_vec(), vec![IndexedValue { index: 0, value: 3 }]),
/// (b"y".to_vec(), vec![IndexedValue { index: 1, value: 11 }]),
/// (b"z".to_vec(), vec![IndexedValue { index: 1, value: 12 }]),
/// ]);
/// ```
#[inline]
pub fn op(&self) -> OpBuilder {
OpBuilder::new().add(self)
}
/// Returns a reference to the underlying raw finite state transducer.
#[inline]
pub fn as_fst(&self) -> &raw::Fst<Data> {
&self.0
}
}
impl<Data: Deref<Target = [u8]>> fmt::Debug for Map<Data> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Map([")?;
let mut stream = self.stream();
let mut first = true;
while let Some((k, v)) = stream.next() {
if !first {
write!(f, ", ")?;
}
first = false;
write!(f, "({}, {})", String::from_utf8_lossy(k), v)?;
}
write!(f, "])")
}
}
// Construct a map from an Fst object.
impl<Data> From<raw::Fst<Data>> for Map<Data> {
#[inline]
fn from(fst: raw::Fst<Data>) -> Self {
Map(fst)
}
}
/// Returns the underlying finite state transducer.
impl<Data> AsRef<raw::Fst<Data>> for Map<Data> {
#[inline]
fn as_ref(&self) -> &raw::Fst<Data> {
&self.0
}
}
impl<'m, 'a, Data: Deref<Target = [u8]>> IntoStreamer<'a> for &'m Map<Data> {
type Item = (&'a [u8], u64);
type Into = Stream<'m>;
#[inline]
fn into_stream(self) -> Self::Into {
Stream(self.0.stream())
}
}
/// A builder for creating a map.
///
/// This is not your average everyday builder. It has two important qualities
/// that make it a bit unique from what you might expect:
///
/// 1. All keys must be added in lexicographic order. Adding a key out of order
/// will result in an error. Additionally, adding a duplicate key will also
/// result in an error. That is, once a key is associated with a value,
/// that association can never be modified or deleted.
/// 2. The representation of a map is streamed to *any* `io::Write` as it is
/// built. For an in memory representation, this can be a `Vec<u8>`.
///
/// Point (2) is especially important because it means that a map can be
/// constructed *without storing the entire map in memory*. Namely, since it
/// works with any `io::Write`, it can be streamed directly to a file.
///
/// With that said, the builder does use memory, but **memory usage is bounded
/// to a constant size**. The amount of memory used trades off with the
/// compression ratio. Currently, the implementation hard codes this trade off
/// which can result in about 5-20MB of heap usage during construction. (N.B.
/// Guaranteeing a maximal compression ratio requires memory proportional to
/// the size of the map, which defeats some of the benefit of streaming
/// it to disk. In practice, a small bounded amount of memory achieves
/// close-to-minimal compression ratios.)
///
/// The algorithmic complexity of map construction is `O(n)` where `n` is the
/// number of elements added to the map.
///
/// # Example: build in memory
///
/// This shows how to use the builder to construct a map in memory. Note that
/// `Map::from_iter` provides a convenience function that achieves this same
/// goal without needing to explicitly use `MapBuilder`.
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map, MapBuilder};
///
/// let mut build = MapBuilder::memory();
/// build.insert("bruce", 1).unwrap();
/// build.insert("clarence", 2).unwrap();
/// build.insert("stevie", 3).unwrap();
///
/// // You could also call `finish()` here, but since we're building the map in
/// // memory, there would be no way to get the `Vec<u8>` back.
/// let bytes = build.into_inner().unwrap();
///
/// // At this point, the map has been constructed, but here's how to read it.
/// let map = Map::from_bytes(bytes).unwrap();
/// let mut stream = map.into_stream();
/// let mut kvs = vec![];
/// while let Some((k, v)) = stream.next() {
/// kvs.push((k.to_vec(), v));
/// }
/// assert_eq!(kvs, vec![
/// (b"bruce".to_vec(), 1),
/// (b"clarence".to_vec(), 2),
/// (b"stevie".to_vec(), 3),
/// ]);
/// ```
pub struct MapBuilder<W>(raw::Builder<W>);
impl MapBuilder<Vec<u8>> {
/// Create a builder that builds a map in memory.
#[inline]
pub fn memory() -> Self {
MapBuilder(raw::Builder::memory())
}
}
impl<W: io::Write> MapBuilder<W> {
/// Create a builder that builds a map by writing it to `wtr` in a
/// streaming fashion.
pub fn new(wtr: W) -> Result<MapBuilder<W>> {
raw::Builder::new_type(wtr, 0).map(MapBuilder)
}
/// Insert a new key-value pair into the map.
///
/// Keys must be convertible to byte strings. Values must be a `u64`, which
/// is a restriction of the current implementation of finite state
/// transducers. (Values may one day be expanded to other types.)
///
/// If a key is inserted that is less than or equal to any previous key
/// added, then an error is returned. Similarly, if there was a problem
/// writing to the underlying writer, an error is returned.
pub fn insert<K: AsRef<[u8]>>(&mut self, key: K, val: u64) -> Result<()> {
self.0.insert(key, val)
}
/// Calls insert on each item in the iterator.
///
/// If an error occurred while adding an element, processing is stopped
/// and the error is returned.
///
/// If a key is inserted that is less than or equal to any previous key
/// added, then an error is returned. Similarly, if there was a problem
/// writing to the underlying writer, an error is returned.
pub fn extend_iter<K, I>(&mut self, iter: I) -> Result<()>
where
K: AsRef<[u8]>,
I: IntoIterator<Item = (K, u64)>,
{
self.0
.extend_iter(iter.into_iter().map(|(k, v)| (k, raw::Output::new(v))))
}
/// Calls insert on each item in the stream.
///
/// Note that unlike `extend_iter`, this is not generic on the items in
/// the stream.
///
/// If a key is inserted that is less than or equal to any previous key
/// added, then an error is returned. Similarly, if there was a problem
/// writing to the underlying writer, an error is returned.
pub fn extend_stream<'f, I, S>(&mut self, stream: I) -> Result<()>
where
I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
{
self.0.extend_stream(StreamOutput(stream.into_stream()))
}
/// Finishes the construction of the map and flushes the underlying
/// writer. After completion, the data written to `W` may be read using
/// one of `Map`'s constructor methods.
pub fn finish(self) -> Result<()> {
self.0.finish()
}
/// Just like `finish`, except it returns the underlying writer after
/// flushing it.
pub fn into_inner(self) -> Result<W> {
self.0.into_inner()
}
/// Gets a reference to the underlying writer.
pub fn get_ref(&self) -> &W {
self.0.get_ref()
}
/// Returns the number of bytes written to the underlying writer
pub fn bytes_written(&self) -> u64 {
self.0.bytes_written()
}
}
/// A lexicographically ordered stream of key-value pairs from a map.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Stream<'m, A = AlwaysMatch>(raw::Stream<'m, A>)
where
A: Automaton;
impl<'a, 'm, A: Automaton> Streamer<'a> for Stream<'m, A> {
type Item = (&'a [u8], u64);
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next().map(|(key, out)| (key, out.value()))
}
}
impl<'m, A: Automaton> Stream<'m, A> {
/// Convert this stream into a vector of byte strings and outputs.
///
/// Note that this creates a new allocation for every key in the stream.
pub fn into_byte_vec(self) -> Vec<(Vec<u8>, u64)> {
self.0.into_byte_vec()
}
/// Convert this stream into a vector of Unicode strings and outputs.
///
/// If any key is not valid UTF-8, then iteration on the stream is stopped
/// and a UTF-8 decoding error is returned.
///
/// Note that this creates a new allocation for every key in the stream.
pub fn into_str_vec(self) -> Result<Vec<(String, u64)>> {
self.0.into_str_vec()
}
/// Convert this stream into a vector of byte strings.
///
/// Note that this creates a new allocation for every key in the stream.
pub fn into_byte_keys(self) -> Vec<Vec<u8>> {
self.0.into_byte_keys()
}
/// Convert this stream into a vector of Unicode strings.
///
/// If any key is not valid UTF-8, then iteration on the stream is stopped
/// and a UTF-8 decoding error is returned.
///
/// Note that this creates a new allocation for every key in the stream.
pub fn into_str_keys(self) -> Result<Vec<String>> {
self.0.into_str_keys()
}
/// Convert this stream into a vector of outputs.
pub fn into_values(self) -> Vec<u64> {
self.0.into_values()
}
}
/// A lexicographically ordered stream of keys from a map.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Keys<'m>(raw::Stream<'m>);
impl<'a, 'm> Streamer<'a> for Keys<'m> {
type Item = &'a [u8];
#[inline]
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next().map(|(key, _)| key)
}
}
/// A stream of values from a map, lexicographically ordered by each value's
/// corresponding key.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Values<'m>(raw::Stream<'m>);
impl<'a, 'm> Streamer<'a> for Values<'m> {
type Item = u64;
#[inline]
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next().map(|(_, out)| out.value())
}
}
/// A builder for constructing range queries on streams.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `Stream`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct StreamBuilder<'m, A = AlwaysMatch>(raw::StreamBuilder<'m, A>);
impl<'m, A: Automaton> StreamBuilder<'m, A> {
/// Specify a greater-than-or-equal-to bound.
pub fn ge<T: AsRef<[u8]>>(self, bound: T) -> Self {
StreamBuilder(self.0.ge(bound))
}
/// Specify a greater-than bound.
pub fn gt<T: AsRef<[u8]>>(self, bound: T) -> Self {
StreamBuilder(self.0.gt(bound))
}
/// Specify a less-than-or-equal-to bound.
pub fn le<T: AsRef<[u8]>>(self, bound: T) -> Self {
StreamBuilder(self.0.le(bound))
}
/// Specify a less-than bound.
pub fn lt<T: AsRef<[u8]>>(self, bound: T) -> Self {
StreamBuilder(self.0.lt(bound))
}
/// Make it iterate backwards.
pub fn backward(self) -> Self {
StreamBuilder(self.0.backward())
}
/// Return this builder and gives the automaton states
/// along with the results.
pub fn with_state(self) -> StreamWithStateBuilder<'m, A> {
StreamWithStateBuilder(self.0.with_state())
}
}
impl<'m, 'a, A: Automaton> IntoStreamer<'a> for StreamBuilder<'m, A> {
type Item = (&'a [u8], u64);
type Into = Stream<'m, A>;
fn into_stream(self) -> Self::Into {
Stream(self.0.into_stream())
}
}
/// A builder for constructing range queries of streams
/// that returns results along with automaton states.
///
/// Once all bounds are set, one should call `into_stream` to get a
/// `StreamWithState`.
///
/// Bounds are not additive. That is, if `ge` is called twice on the same
/// builder, then the second setting wins.
///
/// The `A` type parameter corresponds to an optional automaton to filter
/// the stream. By default, no filtering is done.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct StreamWithStateBuilder<'m, A = AlwaysMatch>(raw::StreamWithStateBuilder<'m, A>);
impl<'m, 'a, A: 'a + Automaton> IntoStreamer<'a> for StreamWithStateBuilder<'m, A>
where
A::State: Clone,
{
type Item = (&'a [u8], u64, A::State);
type Into = StreamWithState<'m, A>;
fn into_stream(self) -> Self::Into {
StreamWithState(self.0.into_stream())
}
}
/// A builder for collecting map streams on which to perform set operations
/// on the keys of maps.
///
/// Set operations include intersection, union, difference and symmetric
/// difference. The result of each set operation is itself a stream that emits
/// pairs of keys and a sequence of each occurrence of that key in the
/// participating streams. This information allows one to perform set
/// operations on maps and customize how conflicting output values are handled.
///
/// All set operations work efficiently on an arbitrary number of
/// streams with memory proportional to the number of streams.
///
/// The algorithmic complexity of all set operations is `O(n1 + n2 + n3 + ...)`
/// where `n1, n2, n3, ...` correspond to the number of elements in each
/// stream.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying set.
pub struct OpBuilder<'m>(raw::OpBuilder<'m>);
impl<'m> OpBuilder<'m> {
/// Create a new set operation builder.
#[inline]
pub fn new() -> Self {
OpBuilder(raw::OpBuilder::default())
}
/// Add a stream to this set operation.
///
/// This is useful for a chaining style pattern, e.g.,
/// `builder.add(stream1).add(stream2).union()`.
///
/// The stream must emit a lexicographically ordered sequence of key-value
/// pairs.
pub fn add<I, S>(mut self, streamable: I) -> Self
where
I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
S: 'm + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
{
self.push(streamable);
self
}
/// Add a stream to this set operation.
///
/// The stream must emit a lexicographically ordered sequence of key-value
/// pairs.
pub fn push<I, S>(&mut self, streamable: I)
where
I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
S: 'm + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
{
self.0.push(StreamOutput(streamable.into_stream()));
}
/// Performs a union operation on all streams that have been added.
///
/// Note that this returns a stream of `(&[u8], &[IndexedValue])`. The
/// first element of the tuple is the byte string key. The second element
/// of the tuple is a list of all occurrences of that key in participating
/// streams. The `IndexedValue` contains an index and the value associated
/// with that key in that stream. The index uniquely identifies each
/// stream, which is an integer that is auto-incremented when a stream
/// is added to this operation (starting at `0`).
///
/// # Example
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
/// use tantivy_fst::map::IndexedValue;
///
/// let map1 = Map::from_iter(vec![
/// ("a", 1), ("b", 2), ("c", 3),
/// ]).unwrap();
/// let map2 = Map::from_iter(vec![
/// ("a", 11), ("y", 12), ("z", 13),
/// ]).unwrap();
///
/// let mut union = map1.op().add(&map2).union();
///
/// let mut kvs = vec![];
/// while let Some((k, vs)) = union.next() {
/// kvs.push((k.to_vec(), vs.to_vec()));
/// }
/// assert_eq!(kvs, vec![
/// (b"a".to_vec(), vec![
/// IndexedValue { index: 0, value: 1 },
/// IndexedValue { index: 1, value: 11 },
/// ]),
/// (b"b".to_vec(), vec![IndexedValue { index: 0, value: 2 }]),
/// (b"c".to_vec(), vec![IndexedValue { index: 0, value: 3 }]),
/// (b"y".to_vec(), vec![IndexedValue { index: 1, value: 12 }]),
/// (b"z".to_vec(), vec![IndexedValue { index: 1, value: 13 }]),
/// ]);
/// ```
#[inline]
pub fn union(self) -> Union<'m> {
Union(self.0.union())
}
/// Chains all streams that have been added in the order they have been added.
///
/// Note that this returns a stream of `(&[u8], &[Output])`. The
/// first element of the tuple is the byte string key. The second element
/// of the tuple is the value associated with that key in the underlying
/// streams. This is useful when the streams area already sorted and not
/// overlapping.
///
/// # Example
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
/// use tantivy_fst::raw::Output;
/// use tantivy_fst::map::IndexedValue;
///
/// let map1 = Map::from_iter(vec![
/// ("a", 1), ("b", 2),
/// ]).unwrap();
/// let map2 = Map::from_iter(vec![
/// ("a", 11), ("y", 12),
/// ]).unwrap();
///
/// let mut chain = map1.op().add(&map2).chain();
///
/// let mut kvs = vec![];
/// while let Some((k, v)) = chain.next() {
/// kvs.push((k.to_vec(), v));
/// }
/// assert_eq!(kvs, vec![
/// (b"a".to_vec(), Output::new(1)),
/// (b"b".to_vec(), Output::new(2)),
/// (b"a".to_vec(), Output::new(11)),
/// (b"y".to_vec(), Output::new(12)),
/// ]);
/// ```
#[inline]
pub fn chain(self) -> Chain<'m> {
Chain(self.0.chain())
}
/// Performs an intersection operation on all streams that have been added.
///
/// Note that this returns a stream of `(&[u8], &[IndexedValue])`. The
/// first element of the tuple is the byte string key. The second element
/// of the tuple is a list of all occurrences of that key in participating
/// streams. The `IndexedValue` contains an index and the value associated
/// with that key in that stream. The index uniquely identifies each
/// stream, which is an integer that is auto-incremented when a stream
/// is added to this operation (starting at `0`).
///
/// # Example
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
/// use tantivy_fst::map::IndexedValue;
///
/// let map1 = Map::from_iter(vec![
/// ("a", 1), ("b", 2), ("c", 3),
/// ]).unwrap();
/// let map2 = Map::from_iter(vec![
/// ("a", 11), ("y", 12), ("z", 13),
/// ]).unwrap();
///
/// let mut intersection = map1.op().add(&map2).intersection();
///
/// let mut kvs = vec![];
/// while let Some((k, vs)) = intersection.next() {
/// kvs.push((k.to_vec(), vs.to_vec()));
/// }
/// assert_eq!(kvs, vec![
/// (b"a".to_vec(), vec![
/// IndexedValue { index: 0, value: 1 },
/// IndexedValue { index: 1, value: 11 },
/// ]),
/// ]);
/// ```
#[inline]
pub fn intersection(self) -> Intersection<'m> {
Intersection(self.0.intersection())
}
/// Performs a difference operation with respect to the first stream added.
/// That is, this returns a stream of all elements in the first stream
/// that don't exist in any other stream that has been added.
///
/// Note that this returns a stream of `(&[u8], &[IndexedValue])`. The
/// first element of the tuple is the byte string key. The second element
/// of the tuple is a list of all occurrences of that key in participating
/// streams. The `IndexedValue` contains an index and the value associated
/// with that key in that stream. The index uniquely identifies each
/// stream, which is an integer that is auto-incremented when a stream
/// is added to this operation (starting at `0`).
///
/// # Example
///
/// ```rust
/// use tantivy_fst::{Streamer, Map};
/// use tantivy_fst::map::IndexedValue;
///
/// let map1 = Map::from_iter(vec![
/// ("a", 1), ("b", 2), ("c", 3),
/// ]).unwrap();
/// let map2 = Map::from_iter(vec![
/// ("a", 11), ("y", 12), ("z", 13),
/// ]).unwrap();
///
/// let mut difference = map1.op().add(&map2).difference();
///
/// let mut kvs = vec![];
/// while let Some((k, vs)) = difference.next() {
/// kvs.push((k.to_vec(), vs.to_vec()));
/// }
/// assert_eq!(kvs, vec![
/// (b"b".to_vec(), vec![IndexedValue { index: 0, value: 2 }]),
/// (b"c".to_vec(), vec![IndexedValue { index: 0, value: 3 }]),
/// ]);
/// ```
#[inline]
pub fn difference(self) -> Difference<'m> {
Difference(self.0.difference())
}
/// Performs a symmetric difference operation on all of the streams that
/// have been added.
///
/// When there are only two streams, then the keys returned correspond to
/// keys that are in either stream but *not* in both streams.
///
/// More generally, for any number of streams, keys that occur in an odd
/// number of streams are returned.
///
/// Note that this returns a stream of `(&[u8], &[IndexedValue])`. The
/// first element of the tuple is the byte string key. The second element
/// of the tuple is a list of all occurrences of that key in participating
/// streams. The `IndexedValue` contains an index and the value associated
/// with that key in that stream. The index uniquely identifies each
/// stream, which is an integer that is auto-incremented when a stream
/// is added to this operation (starting at `0`).
///
/// # Example
///
/// ```rust
/// use tantivy_fst::{IntoStreamer, Streamer, Map};
/// use tantivy_fst::map::IndexedValue;
///
/// let map1 = Map::from_iter(vec![
/// ("a", 1), ("b", 2), ("c", 3),
/// ]).unwrap();
/// let map2 = Map::from_iter(vec![
/// ("a", 11), ("y", 12), ("z", 13),
/// ]).unwrap();
///
/// let mut sym_difference = map1.op().add(&map2).symmetric_difference();
///
/// let mut kvs = vec![];
/// while let Some((k, vs)) = sym_difference.next() {
/// kvs.push((k.to_vec(), vs.to_vec()));
/// }
/// assert_eq!(kvs, vec![
/// (b"b".to_vec(), vec![IndexedValue { index: 0, value: 2 }]),
/// (b"c".to_vec(), vec![IndexedValue { index: 0, value: 3 }]),
/// (b"y".to_vec(), vec![IndexedValue { index: 1, value: 12 }]),
/// (b"z".to_vec(), vec![IndexedValue { index: 1, value: 13 }]),
/// ]);
/// ```
#[inline]
pub fn symmetric_difference(self) -> SymmetricDifference<'m> {
SymmetricDifference(self.0.symmetric_difference())
}
}
impl<'f, I, S> Extend<I> for OpBuilder<'f>
where
I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
{
fn extend<T>(&mut self, it: T)
where
T: IntoIterator<Item = I>,
{
for stream in it {
self.push(stream);
}
}
}
impl<'f, I, S> FromIterator<I> for OpBuilder<'f>
where
I: for<'a> IntoStreamer<'a, Into = S, Item = (&'a [u8], u64)>,
S: 'f + for<'a> Streamer<'a, Item = (&'a [u8], u64)>,
{
fn from_iter<T>(it: T) -> Self
where
T: IntoIterator<Item = I>,
{
let mut op = OpBuilder::new();
op.extend(it);
op
}
}
/// A stream of set union over multiple map streams in lexicographic order.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Union<'m>(raw::Union<'m>);
impl<'a, 'm> Streamer<'a> for Union<'m> {
type Item = (&'a [u8], &'a [IndexedValue]);
#[inline]
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next()
}
}
/// A stream of set union over multiple map streams in lexicographic order.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Chain<'m>(raw::Chain<'m>);
impl<'a, 'm> Streamer<'a> for Chain<'m> {
type Item = (&'a [u8], Output);
#[inline]
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next()
}
}
/// A stream of set intersection over multiple map streams in lexicographic
/// order.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Intersection<'m>(raw::Intersection<'m>);
impl<'a, 'm> Streamer<'a> for Intersection<'m> {
type Item = (&'a [u8], &'a [IndexedValue]);
#[inline]
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next()
}
}
/// A stream of set difference over multiple map streams in lexicographic
/// order.
///
/// The difference operation is taken with respect to the first stream and the
/// rest of the streams. i.e., All elements in the first stream that do not
/// appear in any other streams.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct Difference<'m>(raw::Difference<'m>);
impl<'a, 'm> Streamer<'a> for Difference<'m> {
type Item = (&'a [u8], &'a [IndexedValue]);
#[inline]
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next()
}
}
/// A stream of set symmetric difference over multiple map streams in
/// lexicographic order.
///
/// The `'m` lifetime parameter refers to the lifetime of the underlying map.
pub struct SymmetricDifference<'m>(raw::SymmetricDifference<'m>);
impl<'a, 'm> Streamer<'a> for SymmetricDifference<'m> {
type Item = (&'a [u8], &'a [IndexedValue]);
#[inline]
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next()
}
}
/// A specialized stream for mapping map streams (`(&[u8], u64)`) to streams
/// used by raw fsts (`(&[u8], Output)`).
///
/// If this were iterators, we could use `iter::Map`, but doing this on streams
/// requires HKT, so we need to write out the monomorphization ourselves.
struct StreamOutput<S>(S);
impl<'a, S> Streamer<'a> for StreamOutput<S>
where
S: Streamer<'a, Item = (&'a [u8], u64)>,
{
type Item = (&'a [u8], raw::Output);
fn next(&'a mut self) -> Option<Self::Item> {
self.0.next().map(|(k, v)| (k, raw::Output::new(v)))
}
}
/// A lexicographically ordered stream of key-value from a map
/// along with the states of the automaton.
///
/// The `Stream` type is based on the `StreamWithState`.
pub struct StreamWithState<'m, A = AlwaysMatch>(raw::StreamWithState<'m, A>)
where
A: Automaton;
impl<'a, 'm, A: 'a + Automaton> Streamer<'a> for StreamWithState<'m, A>
where
A::State: Clone,
{
type Item = (&'a [u8], u64, A::State);
fn next(&'a mut self) -> Option<Self::Item> {
self.0
.next()
.map(|(key, out, state)| (key, out.value(), state))
}
}