tarpc/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
// Copyright 2018 Google LLC
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.
//! *Disclaimer*: This is not an official Google product.
//!
//! tarpc is an RPC framework for rust with a focus on ease of use. Defining a
//! service can be done in just a few lines of code, and most of the boilerplate of
//! writing a server is taken care of for you.
//!
//! [Documentation](https://docs.rs/crate/tarpc/)
//!
//! ## What is an RPC framework?
//! "RPC" stands for "Remote Procedure Call," a function call where the work of
//! producing the return value is being done somewhere else. When an rpc function is
//! invoked, behind the scenes the function contacts some other process somewhere
//! and asks them to evaluate the function instead. The original function then
//! returns the value produced by the other process.
//!
//! RPC frameworks are a fundamental building block of most microservices-oriented
//! architectures. Two well-known ones are [gRPC](http://www.grpc.io) and
//! [Cap'n Proto](https://capnproto.org/).
//!
//! tarpc differentiates itself from other RPC frameworks by defining the schema in code,
//! rather than in a separate language such as .proto. This means there's no separate compilation
//! process, and no context switching between different languages.
//!
//! Some other features of tarpc:
//! - Pluggable transport: any type implementing `Stream<Item = Request> + Sink<Response>` can be
//! used as a transport to connect the client and server.
//! - `Send + 'static` optional: if the transport doesn't require it, neither does tarpc!
//! - Cascading cancellation: dropping a request will send a cancellation message to the server.
//! The server will cease any unfinished work on the request, subsequently cancelling any of its
//! own requests, repeating for the entire chain of transitive dependencies.
//! - Configurable deadlines and deadline propagation: request deadlines default to 10s if
//! unspecified. The server will automatically cease work when the deadline has passed. Any
//! requests sent by the server that use the request context will propagate the request deadline.
//! For example, if a server is handling a request with a 10s deadline, does 2s of work, then
//! sends a request to another server, that server will see an 8s deadline.
//! - Distributed tracing: tarpc is instrumented with
//! [tracing](https://github.com/tokio-rs/tracing) primitives extended with
//! [OpenTelemetry](https://opentelemetry.io/) traces. Using a compatible tracing subscriber like
//! [OTLP](https://github.com/open-telemetry/opentelemetry-rust/tree/main/opentelemetry-otlp),
//! each RPC can be traced through the client, server, and other dependencies downstream of the
//! server. Even for applications not connected to a distributed tracing collector, the
//! instrumentation can also be ingested by regular loggers like
//! [env_logger](https://github.com/env-logger-rs/env_logger/).
//! - Serde serialization: enabling the `serde1` Cargo feature will make service requests and
//! responses `Serialize + Deserialize`. It's entirely optional, though: in-memory transports can
//! be used, as well, so the price of serialization doesn't have to be paid when it's not needed.
//!
//! ## Usage
//! Add to your `Cargo.toml` dependencies:
//!
//! ```toml
//! tarpc = "0.35"
//! ```
//!
//! The `tarpc::service` attribute expands to a collection of items that form an rpc service.
//! These generated types make it easy and ergonomic to write servers with less boilerplate.
//! Simply implement the generated service trait, and you're off to the races!
//!
//! ## Example
//!
//! This example uses [tokio](https://tokio.rs), so add the following dependencies to
//! your `Cargo.toml`:
//!
//! ```toml
//! anyhow = "1.0"
//! futures = "0.3"
//! tarpc = { version = "0.35", features = ["tokio1"] }
//! tokio = { version = "1.0", features = ["macros"] }
//! ```
//!
//! In the following example, we use an in-process channel for communication between
//! client and server. In real code, you will likely communicate over the network.
//! For a more real-world example, see [example-service](example-service).
//!
//! First, let's set up the dependencies and service definition.
//!
//! ```rust
//! # extern crate futures;
//!
//! use futures::{
//! prelude::*,
//! };
//! use tarpc::{
//! client, context,
//! server::{self, incoming::Incoming, Channel},
//! };
//!
//! // This is the service definition. It looks a lot like a trait definition.
//! // It defines one RPC, hello, which takes one arg, name, and returns a String.
//! #[tarpc::service]
//! trait World {
//! /// Returns a greeting for name.
//! async fn hello(name: String) -> String;
//! }
//! ```
//!
//! This service definition generates a trait called `World`. Next we need to
//! implement it for our Server struct.
//!
//! ```rust
//! # extern crate futures;
//! # use futures::{
//! # prelude::*,
//! # };
//! # use tarpc::{
//! # client, context,
//! # server::{self, incoming::Incoming},
//! # };
//! # // This is the service definition. It looks a lot like a trait definition.
//! # // It defines one RPC, hello, which takes one arg, name, and returns a String.
//! # #[tarpc::service]
//! # trait World {
//! # /// Returns a greeting for name.
//! # async fn hello(name: String) -> String;
//! # }
//! // This is the type that implements the generated World trait. It is the business logic
//! // and is used to start the server.
//! #[derive(Clone)]
//! struct HelloServer;
//!
//! impl World for HelloServer {
//! // Each defined rpc generates an async fn that serves the RPC
//! async fn hello(self, _: context::Context, name: String) -> String {
//! format!("Hello, {name}!")
//! }
//! }
//! ```
//!
//! Lastly let's write our `main` that will start the server. While this example uses an
//! [in-process channel](transport::channel), tarpc also ships a generic [`serde_transport`]
//! behind the `serde-transport` feature, with additional [TCP](serde_transport::tcp) functionality
//! available behind the `tcp` feature.
//!
//! ```rust
//! # extern crate futures;
//! # use futures::{
//! # prelude::*,
//! # };
//! # use tarpc::{
//! # client, context,
//! # server::{self, Channel},
//! # };
//! # // This is the service definition. It looks a lot like a trait definition.
//! # // It defines one RPC, hello, which takes one arg, name, and returns a String.
//! # #[tarpc::service]
//! # trait World {
//! # /// Returns a greeting for name.
//! # async fn hello(name: String) -> String;
//! # }
//! # // This is the type that implements the generated World trait. It is the business logic
//! # // and is used to start the server.
//! # #[derive(Clone)]
//! # struct HelloServer;
//! # impl World for HelloServer {
//! // Each defined rpc generates an async fn that serves the RPC
//! # async fn hello(self, _: context::Context, name: String) -> String {
//! # format!("Hello, {name}!")
//! # }
//! # }
//! # #[cfg(not(feature = "tokio1"))]
//! # fn main() {}
//! # #[cfg(feature = "tokio1")]
//! #[tokio::main]
//! async fn main() -> anyhow::Result<()> {
//! let (client_transport, server_transport) = tarpc::transport::channel::unbounded();
//!
//! let server = server::BaseChannel::with_defaults(server_transport);
//! tokio::spawn(
//! server.execute(HelloServer.serve())
//! // Handle all requests concurrently.
//! .for_each(|response| async move {
//! tokio::spawn(response);
//! }));
//!
//! // WorldClient is generated by the #[tarpc::service] attribute. It has a constructor `new`
//! // that takes a config and any Transport as input.
//! let mut client = WorldClient::new(client::Config::default(), client_transport).spawn();
//!
//! // The client has an RPC method for each RPC defined in the annotated trait. It takes the same
//! // args as defined, with the addition of a Context, which is always the first arg. The Context
//! // specifies a deadline and trace information which can be helpful in debugging requests.
//! let hello = client.hello(context::current(), "Stim".to_string()).await?;
//!
//! println!("{hello}");
//!
//! Ok(())
//! }
//! ```
//!
//! ## Service Documentation
//!
//! Use `cargo doc` as you normally would to see the documentation created for all
//! items expanded by a `service!` invocation.
#![deny(missing_docs)]
#![allow(clippy::type_complexity)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#[cfg(feature = "serde1")]
#[doc(hidden)]
pub use serde;
#[cfg(feature = "serde-transport")]
pub use {tokio_serde, tokio_util};
#[cfg(feature = "serde-transport")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde-transport")))]
pub mod serde_transport;
pub mod trace;
#[cfg(feature = "serde1")]
pub use tarpc_plugins::derive_serde;
/// The main macro that creates RPC services.
///
/// Rpc methods are specified, mirroring trait syntax:
///
/// ```
/// #[tarpc::service]
/// trait Service {
/// /// Say hello
/// async fn hello(name: String) -> String;
/// }
/// ```
///
/// Attributes can be attached to each rpc. These attributes
/// will then be attached to the generated service traits'
/// corresponding `fn`s, as well as to the client stubs' RPCs.
///
/// The following items are expanded in the enclosing module:
///
/// * `trait Service` -- defines the RPC service.
/// * `fn serve` -- turns a service impl into a request handler.
/// * `Client` -- a client stub with a fn for each RPC.
/// * `fn new_stub` -- creates a new Client stub.
pub use tarpc_plugins::service;
pub(crate) mod cancellations;
pub mod client;
pub mod context;
pub mod server;
pub mod transport;
pub(crate) mod util;
pub use crate::transport::sealed::Transport;
use std::{any::Any, error::Error, io, sync::Arc, time::Instant};
/// A message from a client to a server.
#[derive(Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
#[non_exhaustive]
pub enum ClientMessage<T> {
/// A request initiated by a user. The server responds to a request by invoking a
/// service-provided request handler. The handler completes with a [`response`](Response), which
/// the server sends back to the client.
Request(Request<T>),
/// A command to cancel an in-flight request, automatically sent by the client when a response
/// future is dropped.
///
/// When received, the server will immediately cancel the main task (top-level future) of the
/// request handler for the associated request. Any tasks spawned by the request handler will
/// not be canceled, because the framework layer does not
/// know about them.
Cancel {
/// The trace context associates the message with a specific chain of causally-related actions,
/// possibly orchestrated across many distributed systems.
#[cfg_attr(feature = "serde1", serde(default))]
trace_context: trace::Context,
/// The ID of the request to cancel.
request_id: u64,
},
}
/// A request from a client to a server.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Request<T> {
/// Trace context, deadline, and other cross-cutting concerns.
pub context: context::Context,
/// Uniquely identifies the request across all requests sent over a single channel.
pub id: u64,
/// The request body.
pub message: T,
}
/// Implemented by the request types generated by tarpc::service.
pub trait RequestName {
/// The name of a request.
fn name(&self) -> &str;
}
impl<Req> RequestName for Arc<Req>
where
Req: RequestName,
{
fn name(&self) -> &str {
self.as_ref().name()
}
}
impl<Req> RequestName for Box<Req>
where
Req: RequestName,
{
fn name(&self) -> &str {
self.as_ref().name()
}
}
/// Impls for common std types for testing.
impl RequestName for String {
fn name(&self) -> &str {
"string"
}
}
impl RequestName for char {
fn name(&self) -> &str {
"char"
}
}
impl RequestName for () {
fn name(&self) -> &str {
"unit"
}
}
impl RequestName for i32 {
fn name(&self) -> &str {
"i32"
}
}
impl RequestName for u32 {
fn name(&self) -> &str {
"u32"
}
}
impl RequestName for i64 {
fn name(&self) -> &str {
"i64"
}
}
impl RequestName for u64 {
fn name(&self) -> &str {
"u64"
}
}
/// A response from a server to a client.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Response<T> {
/// The ID of the request being responded to.
pub request_id: u64,
/// The response body, or an error if the request failed.
pub message: Result<T, ServerError>,
}
/// An error indicating the server aborted the request early, e.g., due to request throttling.
#[derive(thiserror::Error, Clone, Debug, PartialEq, Eq, Hash)]
#[error("{kind:?}: {detail}")]
#[non_exhaustive]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct ServerError {
#[cfg_attr(
feature = "serde1",
serde(serialize_with = "util::serde::serialize_io_error_kind_as_u32")
)]
#[cfg_attr(
feature = "serde1",
serde(deserialize_with = "util::serde::deserialize_io_error_kind_from_u32")
)]
/// The type of error that occurred to fail the request.
pub kind: io::ErrorKind,
/// A message describing more detail about the error that occurred.
pub detail: String,
}
/// Critical errors that result in a Channel disconnecting.
#[derive(thiserror::Error, Debug, PartialEq, Eq)]
pub enum ChannelError<E>
where
E: ?Sized,
{
/// Could not read from the transport.
#[error("could not read from the transport")]
Read(#[source] Arc<E>),
/// Could not ready the transport for writes.
#[error("could not ready the transport for writes")]
Ready(#[source] Arc<E>),
/// Could not write to the transport.
#[error("could not write to the transport")]
Write(#[source] Arc<E>),
/// Could not flush the transport.
#[error("could not flush the transport")]
Flush(#[source] Arc<E>),
/// Could not close the write end of the transport.
#[error("could not close the write end of the transport")]
Close(#[source] Arc<E>),
}
impl<E> Clone for ChannelError<E>
where
E: ?Sized,
{
fn clone(&self) -> Self {
use ChannelError::*;
match self {
Read(e) => Read(e.clone()),
Ready(e) => Ready(e.clone()),
Write(e) => Write(e.clone()),
Flush(e) => Flush(e.clone()),
Close(e) => Close(e.clone()),
}
}
}
impl<E> ChannelError<E>
where
E: Error + Send + Sync + 'static,
{
/// Converts the ChannelError's source error type to a dyn Error. This is useful in type-erased
/// contexts, for example, storing a ChannelError in a non-generic type like
/// [`client::RpcError`].
fn upcast_error(self) -> ChannelError<dyn Error + Send + Sync + 'static> {
use ChannelError::*;
match self {
Read(e) => Read(e),
Ready(e) => Ready(e),
Write(e) => Write(e),
Flush(e) => Flush(e),
Close(e) => Close(e),
}
}
}
impl<E> ChannelError<E>
where
E: Send + Sync + 'static,
{
/// Converts the ChannelError's source error type to a dyn Any. This is useful in type-erased
/// contexts, for example, storing a ChannelError in a non-generic type like
/// [`client::RpcError`].
fn upcast_any(self) -> ChannelError<dyn Any + Send + Sync + 'static> {
use ChannelError::*;
match self {
Read(e) => Read(e),
Ready(e) => Ready(e),
Write(e) => Write(e),
Flush(e) => Flush(e),
Close(e) => Close(e),
}
}
}
impl ChannelError<dyn Any + Send + Sync + 'static> {
/// Converts the ChannelError's source error type to a concrete type. This is useful in
/// type-erased contexts, for example, storing a ChannelError in a non-generic type like
/// [`Client::RpcError`].
fn downcast<E>(self) -> Result<ChannelError<E>, Self>
where
E: Any + Send + Sync,
{
use ChannelError::*;
match self {
Read(e) => e.downcast::<E>().map(Read).map_err(Read),
Ready(e) => e.downcast::<E>().map(Ready).map_err(Ready),
Write(e) => e.downcast::<E>().map(Write).map_err(Write),
Flush(e) => e.downcast::<E>().map(Flush).map_err(Flush),
Close(e) => e.downcast::<E>().map(Close).map_err(Close),
}
}
}
impl ServerError {
/// Returns a new server error with `kind` and `detail`.
pub fn new(kind: io::ErrorKind, detail: String) -> ServerError {
Self { kind, detail }
}
}
impl<T> Request<T> {
/// Returns the deadline for this request.
pub fn deadline(&self) -> &Instant {
&self.context.deadline
}
}
#[test]
fn test_channel_any_casts() {
use assert_matches::assert_matches;
let any = ChannelError::Read(Arc::new("")).upcast_any();
assert_matches!(any, ChannelError::Read(_));
assert_matches!(any.downcast::<&'static str>(), Ok(ChannelError::Read(_)));
let any = ChannelError::Ready(Arc::new("")).upcast_any();
assert_matches!(any, ChannelError::Ready(_));
assert_matches!(any.downcast::<&'static str>(), Ok(ChannelError::Ready(_)));
let any = ChannelError::Write(Arc::new("")).upcast_any();
assert_matches!(any, ChannelError::Write(_));
assert_matches!(any.downcast::<&'static str>(), Ok(ChannelError::Write(_)));
let any = ChannelError::Flush(Arc::new("")).upcast_any();
assert_matches!(any, ChannelError::Flush(_));
assert_matches!(any.downcast::<&'static str>(), Ok(ChannelError::Flush(_)));
let any = ChannelError::Close(Arc::new("")).upcast_any();
assert_matches!(any, ChannelError::Close(_));
assert_matches!(any.downcast::<&'static str>(), Ok(ChannelError::Close(_)));
}
#[test]
fn test_channel_error_upcast() {
use assert_matches::assert_matches;
use std::fmt;
#[derive(Debug)]
struct E;
impl fmt::Display for E {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "E")
}
}
impl Error for E {}
assert_matches!(
ChannelError::Read(Arc::new(E)).upcast_error(),
ChannelError::Read(_)
);
assert_matches!(
ChannelError::Ready(Arc::new(E)).upcast_error(),
ChannelError::Ready(_)
);
assert_matches!(
ChannelError::Write(Arc::new(E)).upcast_error(),
ChannelError::Write(_)
);
assert_matches!(
ChannelError::Flush(Arc::new(E)).upcast_error(),
ChannelError::Flush(_)
);
assert_matches!(
ChannelError::Close(Arc::new(E)).upcast_error(),
ChannelError::Close(_)
);
}