tasm_lib/arithmetic/xfe/mod_pow_u32_generic.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
use triton_vm::prelude::triton_asm;
use triton_vm::prelude::LabelledInstruction;
use crate::data_type::DataType;
use crate::library::Library;
use crate::traits::basic_snippet::BasicSnippet;
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct XfeModPowU32Generic;
impl BasicSnippet for XfeModPowU32Generic {
fn inputs(&self) -> Vec<(DataType, String)> {
vec![
(DataType::U32, "exponent".to_owned()),
(DataType::Xfe, "base".to_owned()),
]
}
fn outputs(&self) -> Vec<(DataType, String)> {
vec![(DataType::Xfe, "result".to_owned())]
}
fn entrypoint(&self) -> String {
"tasmlib_arithmetic_xfe_mod_pow_u32".to_owned()
}
// This implementation is far from optimized, not very efficient. To make a snippet
// with a shorter execution trace, you could e.g. implement this algorithm for
// statically known exponents.
fn code(&self, _library: &mut Library) -> Vec<LabelledInstruction> {
// Implemented as:
// ```rust
// fn mod_pow_u32(exponent: u32, base: XFieldElement) -> Self {
// let mut x = base;
// let mut acc = Self::one();
// let mut i = exponent;
// while i > 0 {
// if i & 1 == 1 {
// acc *= x;
// }
// x *= x;
// i >>= 1;
// }
// acc
//
let entrypoint = self.entrypoint();
let loop_code_label = format!("{entrypoint}_loop");
let acc_mul_x_label = format!("{entrypoint}_acc_mul_x");
triton_asm!(
{entrypoint}:
// _ exponent [base]
push 0
push 0
push 1
// _ exponent [base] [1]
// Rename
// _ i [x] [acc]
call {loop_code_label}
// _ 0 [x] [result]
swap 4
pop 1
swap 4
pop 1
swap 4
pop 2
// _ [result]
return
// Invariant: i [x] [acc]
{loop_code_label}:
// Return iff i == 0
dup 6
push 0
eq
skiz
return
// _ i [x] [acc]
dup 6
push 1
and
// _ i [x] [acc] (i & 1)
skiz
call {acc_mul_x_label}
// _ i [x] [acc']
dup 5 dup 5 dup 5
dup 2 dup 2 dup 2
// _ i [x] [acc'] [x] [x]
xx_mul
// _ i [x] [acc'] [x * x]
swap 6
pop 1
swap 6
pop 1
swap 6
pop 1
// _ i [x'] [acc']
swap 6
// _ acc'_0 [x'] acc'_2 acc'_1 i
push 2
swap 1
// _ acc'_0 [x'] acc'_2 acc'_1 2 i
div_mod
pop 1
// _ acc'_0 [x'] acc'_2 acc'_1 (i / 2)
swap 6
// _ i' [x'] acc'_2 acc'_1 acc'_0
// _ i' [x'] [acc']
recurse
{acc_mul_x_label}:
// _ [x] [acc]
dup 5
dup 5
dup 5
xx_mul
// _ [x] [acc * x]
return
)
}
}
#[cfg(test)]
mod tests {
use std::cell::RefCell;
use std::rc::Rc;
use itertools::Itertools;
use rand::prelude::*;
use triton_vm::prelude::*;
use triton_vm::twenty_first::math::traits::ModPowU32;
use super::*;
use crate::empty_stack;
use crate::execute_with_terminal_state;
use crate::linker::link_for_isolated_run;
use crate::snippet_bencher::BenchmarkCase;
use crate::traits::closure::Closure;
use crate::traits::closure::ShadowedClosure;
use crate::traits::rust_shadow::RustShadow;
impl Closure for XfeModPowU32Generic {
fn rust_shadow(&self, stack: &mut Vec<BFieldElement>) {
let base = XFieldElement::new([
stack.pop().unwrap(),
stack.pop().unwrap(),
stack.pop().unwrap(),
]);
let exponent: u32 = stack.pop().unwrap().try_into().unwrap();
let result = base.mod_pow_u32(exponent);
for elem in result.coefficients.into_iter().rev() {
stack.push(elem);
}
}
fn pseudorandom_initial_state(
&self,
seed: [u8; 32],
bench_case: Option<crate::snippet_bencher::BenchmarkCase>,
) -> Vec<BFieldElement> {
let mut rng: StdRng = SeedableRng::from_seed(seed);
let exponent = match bench_case {
Some(BenchmarkCase::CommonCase) => 1 << 25,
Some(BenchmarkCase::WorstCase) => u32::MAX,
None => rng.gen(),
};
let base: XFieldElement = rng.gen();
self.prepare_state(base, exponent)
}
fn corner_case_initial_states(&self) -> Vec<Vec<BFieldElement>> {
let bfe_14 = BFieldElement::new(14);
let an_xfe = XFieldElement::new([bfe_14, bfe_14, bfe_14]);
(0..=5)
.chain([u32::MAX - 1, u32::MAX])
.map(|exp| self.prepare_state(an_xfe, exp))
.collect_vec()
}
}
impl XfeModPowU32Generic {
fn prepare_state(&self, base: XFieldElement, exponent: u32) -> Vec<BFieldElement> {
let base = base.coefficients.into_iter().rev().collect();
[
self.init_stack_for_isolated_run(),
vec![BFieldElement::new(exponent as u64)],
base,
]
.concat()
}
}
#[test]
fn mod_pow_u32_xfe_pbt() {
ShadowedClosure::new(XfeModPowU32Generic).test()
}
#[test]
fn verify_crash_if_exponent_not_u32() {
let bfe_14 = BFieldElement::new(14);
let xfe_14 = XFieldElement::new([bfe_14, bfe_14, bfe_14]);
let xfe_14: Vec<_> = xfe_14.coefficients.into_iter().rev().collect();
let code = link_for_isolated_run(Rc::new(RefCell::new(XfeModPowU32Generic)));
for exponent in [
1u64 << 32,
1u64 << 33,
(1u64 << 32),
1u64 << 63,
BFieldElement::MAX - 1,
BFieldElement::MAX,
] {
let init_stack = [
empty_stack(),
vec![BFieldElement::new(exponent)],
xfe_14.clone(),
]
.concat();
let tvm_result = execute_with_terminal_state(
Program::new(&code),
&[],
&init_stack,
&NonDeterminism::default(),
None,
);
assert!(matches!(
tvm_result.unwrap_err(),
InstructionError::OpStackError(OpStackError::FailedU32Conversion(_))
));
}
}
}
#[cfg(test)]
mod benches {
use super::*;
use crate::traits::closure::ShadowedClosure;
use crate::traits::rust_shadow::RustShadow;
#[test]
fn xfe_mod_pow_benchmark() {
ShadowedClosure::new(XfeModPowU32Generic).bench();
}
}