tasm_lib/traits/
algorithm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
use std::cell::RefCell;
use std::collections::HashMap;
use std::rc::Rc;

use rand::prelude::*;
use triton_vm::prelude::*;

use super::basic_snippet::BasicSnippet;
use super::rust_shadow::RustShadow;
use crate::linker::execute_bench;
use crate::linker::link_for_isolated_run;
use crate::snippet_bencher::write_benchmarks;
use crate::snippet_bencher::BenchmarkCase;
use crate::snippet_bencher::NamedBenchmarkResult;
use crate::test_helpers::test_rust_equivalence_given_complete_state;
use crate::InitVmState;
use crate::VmHasher;

/// An Algorithm can modify memory and take ND_input.
///
/// An Algorithm is a piece of tasm code that can modify memory even at addresses below
/// the dynamic memory allocator, and can take nondeterministic input. It cannot read from
/// standard in or write to standard out.
///
/// See also: [closure], [function], [procedure], [accessor], [mem_preserver],
///           [read_only_algorithm]
///
/// [closure]: crate::traits::closure::Closure
/// [function]: crate::traits::function::Function
/// [procedure]: crate::traits::procedure::Procedure
/// [accessor]: crate::traits::accessor::Accessor
/// [mem_preserver]: crate::traits::mem_preserver::MemPreserver
/// [read_only_algorithm]: crate::traits::read_only_algorithm::ReadOnlyAlgorithm
pub trait Algorithm: BasicSnippet {
    fn rust_shadow(
        &self,
        stack: &mut Vec<BFieldElement>,
        memory: &mut HashMap<BFieldElement, BFieldElement>,
        nondeterminism: &NonDeterminism,
    );

    /// Take a object about which something is being proven in order to extract out the
    /// right nondeterminism. Update the mutably referenced non-determism argument.
    ///
    /// For example:
    ///  - When proving the correct verification of a proof, you might want to pull all
    ///    digests out of the authentication structures and put them in the `digests`
    ///    field of the non-determinism. This way the VM can avoid the processing
    ///    required by authentication structures and just divine in the right digests
    ///    as it walks up the Merkle trees.
    ///  - When proving the correct sorting of a list, the VM ought to avoid running a
    ///    sorting algorithm; instead it should divine the sorted list and then prove
    ///    that the two lists are equal. The preprocessing step in this case would take
    ///    the unsorted list, sort it, and use the sorted list to populate the non-
    ///    determinism.
    ///  - When verifying a Falcon signature, at some point the NTT of a vector is needed.
    ///    The VM should not compute the NTT because expensive; instead it should divine
    ///    the NTT-transformed vector and verify that it satisfies the right relation. In
    ///    this case the preprocessor calculates the NTT and populates the non-determinism
    ///    with the transformed vector.
    fn preprocess<T: BFieldCodec>(_meta_input: T, _nondeterminism: &mut NonDeterminism) {}

    fn pseudorandom_initial_state(
        &self,
        seed: [u8; 32],
        bench_case: Option<BenchmarkCase>,
    ) -> AlgorithmInitialState;

    fn corner_case_initial_states(&self) -> Vec<AlgorithmInitialState> {
        vec![]
    }
}

#[derive(Debug, Clone, Default)]
pub struct AlgorithmInitialState {
    pub stack: Vec<BFieldElement>,
    pub nondeterminism: NonDeterminism,
}

impl From<AlgorithmInitialState> for InitVmState {
    fn from(value: AlgorithmInitialState) -> Self {
        Self {
            stack: value.stack,
            nondeterminism: value.nondeterminism,
            ..Default::default()
        }
    }
}

pub struct ShadowedAlgorithm<T: Algorithm + 'static> {
    algorithm: Rc<RefCell<T>>,
}

impl<T: Algorithm + 'static> ShadowedAlgorithm<T> {
    pub fn new(algorithm: T) -> Self {
        Self {
            algorithm: Rc::new(RefCell::new(algorithm)),
        }
    }
}

impl<T> RustShadow for ShadowedAlgorithm<T>
where
    T: Algorithm + 'static,
{
    fn inner(&self) -> Rc<RefCell<dyn BasicSnippet>> {
        self.algorithm.clone()
    }

    fn rust_shadow_wrapper(
        &self,
        _stdin: &[BFieldElement],
        nondeterminism: &NonDeterminism,
        stack: &mut Vec<BFieldElement>,
        memory: &mut HashMap<BFieldElement, BFieldElement>,
        _sponge: &mut Option<VmHasher>,
    ) -> Vec<BFieldElement> {
        self.algorithm
            .borrow()
            .rust_shadow(stack, memory, nondeterminism);
        vec![]
    }

    fn test(&self) {
        for corner_case in self
            .algorithm
            .borrow()
            .corner_case_initial_states()
            .into_iter()
        {
            let stdin = vec![];
            test_rust_equivalence_given_complete_state(
                self,
                &corner_case.stack,
                &stdin,
                &corner_case.nondeterminism,
                &None,
                None,
            );
        }

        let num_states = 10;
        let seed: [u8; 32] = thread_rng().gen();
        let mut rng: StdRng = SeedableRng::from_seed(seed);
        for _ in 0..num_states {
            let seed: [u8; 32] = rng.gen();
            let AlgorithmInitialState {
                stack,
                nondeterminism,
            } = self
                .algorithm
                .borrow()
                .pseudorandom_initial_state(seed, None);

            let stdin = vec![];
            test_rust_equivalence_given_complete_state(
                self,
                &stack,
                &stdin,
                &nondeterminism,
                &None,
                None,
            );
        }
    }

    fn bench(&self) {
        let mut rng: StdRng = SeedableRng::from_seed(
            hex::decode("73a24b6b8b32e4d7d563a4d9a85f476573a24b6b8b32e4d7d563a4d9a85f4765")
                .unwrap()
                .try_into()
                .unwrap(),
        );
        let mut benchmarks = Vec::with_capacity(2);

        for bench_case in [BenchmarkCase::CommonCase, BenchmarkCase::WorstCase] {
            let AlgorithmInitialState {
                stack,
                nondeterminism,
            } = self
                .algorithm
                .borrow()
                .pseudorandom_initial_state(rng.gen(), Some(bench_case));
            let program = link_for_isolated_run(self.algorithm.clone());
            let benchmark = execute_bench(&program, &stack, vec![], nondeterminism, None);
            let benchmark = NamedBenchmarkResult {
                name: self.algorithm.borrow().entrypoint(),
                benchmark_result: benchmark,
                case: bench_case,
            };
            benchmarks.push(benchmark);
        }

        write_benchmarks(benchmarks);
    }
}