tasm_lib/arithmetic/xfe/
mod_pow_u32.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
use triton_vm::prelude::*;

use crate::prelude::*;

#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct XfeModPowU32;

impl BasicSnippet for XfeModPowU32 {
    fn inputs(&self) -> Vec<(DataType, String)> {
        vec![
            (DataType::U32, "exponent".to_owned()),
            (DataType::Xfe, "base".to_owned()),
        ]
    }

    fn outputs(&self) -> Vec<(DataType, String)> {
        vec![(DataType::Xfe, "result".to_owned())]
    }

    fn entrypoint(&self) -> String {
        "tasmlib_arithmetic_xfe_mod_pow_u32".to_owned()
    }

    // This implementation is far from optimized, not very efficient. To make a snippet
    // with a shorter execution trace, you could e.g. implement this algorithm for
    // statically known exponents.
    fn code(&self, _library: &mut Library) -> Vec<LabelledInstruction> {
        // Implemented as:
        // ```rust
        // fn mod_pow_u32(exponent: u32, base: XFieldElement) -> Self {
        //     let mut x = base;
        //     let mut acc = Self::one();
        //     let mut i = exponent;

        //     while i > 0 {
        //         if i & 1 == 1 {
        //             acc *= x;
        //         }

        //         x *= x;
        //         i >>= 1;
        //     }

        //     acc
        //

        let entrypoint = self.entrypoint();
        let loop_code_label = format!("{entrypoint}_loop");
        let acc_mul_x_label = format!("{entrypoint}_acc_mul_x");

        triton_asm!(
            {entrypoint}:
                // _ exponent [base]

                push 0
                push 0
                push 1
                // _ exponent [base] [1]

                // Rename
                // _ i [x] [acc]

                call {loop_code_label}
                // _ 0 [x] [result]

                swap 4
                pop 1
                swap 4
                pop 1
                swap 4
                pop 2
                // _ [result]

                return

            // Invariant: i [x] [acc]
            {loop_code_label}:

                // Return iff i == 0
                dup 6
                push 0
                eq
                skiz
                    return
                // _ i [x] [acc]

                dup 6
                push 1
                and
                // _ i [x] [acc] (i & 1)

                skiz
                    call {acc_mul_x_label}

                // _ i [x] [acc']

                dup 5 dup 5 dup 5
                dup 2 dup 2 dup 2
                // _ i [x] [acc'] [x] [x]

                xx_mul
                // _ i [x] [acc'] [x * x]

                swap 6
                pop 1
                swap 6
                pop 1
                swap 6
                pop 1
                // _ i [x'] [acc']

                swap 6
                // _ acc'_0 [x'] acc'_2 acc'_1 i

                push 2
                swap 1
                // _ acc'_0 [x'] acc'_2 acc'_1 2 i

                div_mod
                pop 1
                // _ acc'_0 [x'] acc'_2 acc'_1 (i / 2)

                swap 6
                // _ i' [x'] acc'_2 acc'_1 acc'_0
                // _ i' [x'] [acc']

                recurse

            {acc_mul_x_label}:
                 // _ [x] [acc]

                 dup 5
                 dup 5
                 dup 5
                 xx_mul
                 // _ [x] [acc * x]

                 return
        )
    }
}

#[cfg(test)]
pub mod tests {
    use twenty_first::math::traits::ModPowU32;

    use super::*;
    use crate::empty_stack;
    use crate::execute_with_terminal_state;
    use crate::test_prelude::*;

    impl Closure for XfeModPowU32 {
        type Args = (u32, XFieldElement);

        fn rust_shadow(&self, stack: &mut Vec<BFieldElement>) {
            let (exponent, base) = pop_encodable::<Self::Args>(stack);
            let result = base.mod_pow_u32(exponent);
            push_encodable(stack, &result);
        }

        fn pseudorandom_args(
            &self,
            seed: [u8; 32],
            bench_case: Option<BenchmarkCase>,
        ) -> Self::Args {
            let mut rng = StdRng::from_seed(seed);
            let exponent = match bench_case {
                Some(BenchmarkCase::CommonCase) => 1 << 25,
                Some(BenchmarkCase::WorstCase) => u32::MAX,
                None => rng.random(),
            };

            (exponent, rng.random())
        }

        fn corner_case_args(&self) -> Vec<Self::Args> {
            let an_xfe = xfe!([14; 3]);

            (0..=5)
                .chain([u32::MAX - 1, u32::MAX])
                .map(|exp| (exp, an_xfe))
                .collect()
        }
    }

    #[test]
    fn mod_pow_u32_xfe_pbt() {
        ShadowedClosure::new(XfeModPowU32).test()
    }

    #[test]
    fn verify_crash_if_exponent_not_u32() {
        let bfe_14 = BFieldElement::new(14);
        let xfe_14 = XFieldElement::new([bfe_14, bfe_14, bfe_14]);
        let xfe_14: Vec<_> = xfe_14.coefficients.into_iter().rev().collect();
        let code = XfeModPowU32.link_for_isolated_run();

        for exponent in [
            1 << 32,
            1 << 33,
            1 << 32,
            1 << 63,
            BFieldElement::MAX - 1,
            BFieldElement::MAX,
        ] {
            let init_stack = [empty_stack(), bfe_vec![exponent], xfe_14.clone()].concat();
            let tvm_result = execute_with_terminal_state(
                Program::new(&code),
                &[],
                &init_stack,
                &NonDeterminism::default(),
                None,
            );
            assert!(matches!(
                tvm_result.unwrap_err(),
                InstructionError::OpStackError(OpStackError::FailedU32Conversion(_))
            ));
        }
    }
}

#[cfg(test)]
mod benches {
    use super::*;
    use crate::test_prelude::*;

    #[test]
    fn benchmark() {
        ShadowedClosure::new(XfeModPowU32).bench();
    }
}