tasm_lib/hashing/
merkle_root.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
use std::collections::HashMap;

use triton_vm::prelude::*;

use crate::prelude::*;
use crate::traits::basic_snippet::Reviewer;
use crate::traits::basic_snippet::SignOffFingerprint;

/// Compute the Merkle root of a slice of `Digest`s. Corresponds to
/// `MerkleTree::`[`sequential_new`][new]`(leafs).`[`root`][root]`()`.
///
/// ### Behavior
///
/// ```text
/// BEFORE: _ *leafs
/// AFTER:  _ [root: Digest]
/// ```
///
/// ### Preconditions
///
/// - `*leafs` points to a list of Digests
/// - the length of the pointed-to list is greater than 0
/// - the length of the pointed-to list is a power of 2
/// - the length of the pointed-to list is a u32
///
/// ### Postconditions
///
/// None.
///
/// [new]: twenty_first::prelude::MerkleTree::sequential_new
/// [root]: twenty_first::prelude::MerkleTree::root
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct MerkleRoot;

impl MerkleRoot {
    pub const NUM_LEAFS_NOT_POWER_OF_2_ERROR_ID: i128 = 431;
}

impl BasicSnippet for MerkleRoot {
    fn inputs(&self) -> Vec<(DataType, String)> {
        vec![(
            DataType::List(Box::new(DataType::Digest)),
            "*leafs".to_string(),
        )]
    }

    fn outputs(&self) -> Vec<(DataType, String)> {
        vec![(DataType::Digest, "root".to_string())]
    }

    fn entrypoint(&self) -> String {
        "tasmlib_hashing_merkle_root".to_string()
    }

    fn code(&self, library: &mut Library) -> Vec<LabelledInstruction> {
        let dyn_malloc = library.import(Box::new(DynMalloc));

        let entrypoint = self.entrypoint();
        let calculate_parent_digests = format!("{entrypoint}_calculate_parent_digests");
        let next_layer_loop = format!("{entrypoint}_next_layer_loop");

        triton_asm!(
            {entrypoint}:
                // _ *leafs

                read_mem 1
                addi 1
                // _ leafs_len *leafs

                /* assert the number of leafs is some power of 2 */
                dup 1
                pop_count
                push 1
                eq
                assert error_id {Self::NUM_LEAFS_NOT_POWER_OF_2_ERROR_ID}

                call {dyn_malloc}
                // _ leafs_len *leafs *parent_level

                /* adjust `*parent_level` to point to last element, first word */
                dup 2
                addi -1
                push {Digest::LEN}
                mul
                add
                // _ leafs_len *leafs (*parent_level + (leafs_len - 1) * Digest::LEN)
                // _ leafs_len *leafs *parent_level'

                /* adjust `*leafs` to point to last element, last word */
                pick 1
                dup 2
                push {Digest::LEN}
                mul
                add
                // _ leafs_len *parent_level' (*leafs + leafs_len * Digest::LEN)
                // _ leafs_len *parent_level' *leafs'

                call {next_layer_loop}
                // _ 1 *address (*root + Digest::LEN)

                place 2
                pop 2
                // _ (*root + Digest::LEN - 1)

                read_mem {Digest::LEN}
                // _ [root: Digest] (*root - 1)

                pop 1
                // _ [root: Digest]

               return

            // INVARIANT: _ current_len *next_level[last]_first_word *current_level[last]_last_word
            {next_layer_loop}:
                // _ current_len *next_level *current_level

                /* end loop if `current_len == 1` */
                dup 2
                push 1
                eq
                skiz
                    return
                // _ current_len *next_level *current_level

                /* update `current_len` */
                pick 2
                push {bfe!(2).inverse()}
                        hint one_half = stack[0]
                mul
                place 2
                // _ (current_len/2) *next_level *current_level

                /* set up termination condition for parent calculation loop:
                 * `*next_level - current_len / 2 * Digest::LEN`
                 */
                dup 1
                dup 3
                push {-(Digest::LEN as isize)}
                mul
                add
                // _ (current_len/2) *next_level *current_level *next_level_stop
                // _ (current_len/2) *next_level *current_elem  *next_elem_stop

                dup 2
                push 0
                push 0
                push 0
                push 0
                pick 6
                // _ (current_len/2) *next_level *next_elem_stop *next_level 0 0 0 0 *current_elem

                call {calculate_parent_digests}
                pop 5
                pop 1
                // _ (current_len/2) *next_level *next_elem_stop

                /* Update `*current_level` based on `*next_level` */
                pick 1
                // _ (current_len/2) *next_elem_stop *next_level

                addi {Digest::LEN - 1}
                // _ (current_len/2) *next_level' *current_level'

                recurse

            // Populate the `*next` digest list
            // INVARIANT: _ *next_elem_stop *next_elem 0 0 0 0 *curr_elem
            {calculate_parent_digests}:
                read_mem {Digest::LEN}
                read_mem {Digest::LEN}
                // _ *next_elem_stop *next_elem 0 0 0 0 [right] [left] (*curr_elem[n] - 10)
                // _ *next_elem_stop *next_elem 0 0 0 0 [right] [left] *curr_elem[n - 2]
                // _ *next_elem_stop *next_elem 0 0 0 0 [right] [left] *curr_elem'

                place 10
                // _ *next_elem_stop *next_elem 0 0 0 0 *curr_elem' [right] [left]

                hash
                // _ *next_elem_stop *next_elem 0 0 0 0 *curr_elem' [parent_digest]

                pick 10
                // _ *next_elem_stop 0 0 0 0 *curr_elem' [parent_digest] *next_elem

                write_mem {Digest::LEN}
                // _ *next_elem_stop 0 0 0 0 *curr_elem' (*next_elem + 5)

                addi -10
                // _ *next_elem_stop 0 0 0 0 *curr_elem' (*next_elem - 5)
                // _ *next_elem_stop 0 0 0 0 *curr_elem' *next_elem[n-1]
                // _ *next_elem_stop 0 0 0 0 *curr_elem' *next_elem'

                place 5
                // _ *next_elem_stop *next_elem' 0 0 0 0 *curr_elem'

                recurse_or_return
        )
    }

    fn sign_offs(&self) -> HashMap<Reviewer, SignOffFingerprint> {
        let mut sign_offs = HashMap::new();
        sign_offs.insert(Reviewer("ferdinand"), 0x1c30ac983fdca9da.into());
        sign_offs
    }
}

#[cfg(test)]
mod tests {
    use proptest::collection::vec;
    use twenty_first::util_types::merkle_tree::MerkleTree;

    use super::*;
    use crate::rust_shadowing_helper_functions::dyn_malloc::dynamic_allocator;
    use crate::test_prelude::*;

    impl MerkleRoot {
        fn init_state(
            &self,
            leafs: Vec<Digest>,
            digests_pointer: BFieldElement,
        ) -> FunctionInitialState {
            let mut memory = HashMap::new();
            encode_to_memory(&mut memory, digests_pointer, &leafs);
            let mut stack = self.init_stack_for_isolated_run();
            stack.push(digests_pointer);

            FunctionInitialState { stack, memory }
        }
    }

    impl Function for MerkleRoot {
        fn rust_shadow(
            &self,
            stack: &mut Vec<BFieldElement>,
            memory: &mut HashMap<BFieldElement, BFieldElement>,
        ) {
            let leafs_pointer = stack.pop().unwrap();
            let leafs = *Vec::decode_from_memory(memory, leafs_pointer).unwrap();
            let mt = MerkleTree::par_new(&leafs).unwrap();

            // mimic snippet: write internal nodes to memory, skipping (dummy) node 0
            let tree_pointer = dynamic_allocator(memory);
            let num_internal_nodes = leafs.len();

            for (node_index, node) in (0..num_internal_nodes).zip(mt.nodes()).skip(1) {
                let node_address = tree_pointer + bfe!(node_index * Digest::LEN);
                encode_to_memory(memory, node_address, node);
            }

            stack.extend(mt.root().reversed().values());
        }

        fn pseudorandom_initial_state(
            &self,
            seed: [u8; 32],
            bench_case: Option<BenchmarkCase>,
        ) -> FunctionInitialState {
            let mut rng = StdRng::from_seed(seed);
            let num_leafs = match bench_case {
                Some(BenchmarkCase::CommonCase) => 512,
                Some(BenchmarkCase::WorstCase) => 1024,
                None => 1 << rng.random_range(0..=8),
            };
            let leafs = (0..num_leafs).map(|_| rng.random()).collect_vec();
            let digests_pointer = rng.random();

            self.init_state(leafs, digests_pointer)
        }

        fn corner_case_initial_states(&self) -> Vec<FunctionInitialState> {
            let height_0 = self.init_state(vec![Digest::default()], bfe!(0));
            let height_1 = self.init_state(vec![Digest::default(), Digest::default()], bfe!(0));

            vec![height_0, height_1]
        }
    }

    #[test]
    fn rust_shadow() {
        ShadowedFunction::new(MerkleRoot).test();
    }

    #[test]
    fn computing_root_of_tree_of_height_0_crashes_vm() {
        test_assertion_failure(
            &ShadowedFunction::new(MerkleRoot),
            MerkleRoot.init_state(vec![], bfe!(0)).into(),
            &[MerkleRoot::NUM_LEAFS_NOT_POWER_OF_2_ERROR_ID],
        );
    }

    #[proptest(cases = 100)]
    fn computing_root_of_tree_of_height_not_power_of_2_crashes_vm(
        #[strategy(vec(arb(), 0..2048))]
        #[filter(!#leafs.len().is_power_of_two())]
        leafs: Vec<Digest>,
        #[strategy(arb())] address: BFieldElement,
    ) {
        test_assertion_failure(
            &ShadowedFunction::new(MerkleRoot),
            MerkleRoot.init_state(leafs, address).into(),
            &[MerkleRoot::NUM_LEAFS_NOT_POWER_OF_2_ERROR_ID],
        );
    }
}

#[cfg(test)]
mod benches {
    use super::*;
    use crate::test_prelude::*;

    #[test]
    fn benchmark() {
        ShadowedFunction::new(MerkleRoot).bench();
    }
}