tasm_lib/memory/memcpy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
use triton_vm::prelude::*;
use crate::prelude::*;
use crate::structure::tasm_object::DEFAULT_MAX_DYN_FIELD_SIZE;
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, Hash)]
pub struct MemCpy; // TODO: add field `static_length : Option<usize>` to avoid loop
impl MemCpy {
pub const EXCEEDS_MAX_COPY_SIZE_ERROR_ID: i128 = 60;
}
impl BasicSnippet for MemCpy {
fn inputs(&self) -> Vec<(DataType, String)> {
vec![
(DataType::VoidPointer, "read_source".to_string()),
(DataType::VoidPointer, "write_dest".to_string()),
(DataType::U32, "num_words".to_string()),
]
}
fn outputs(&self) -> Vec<(DataType, String)> {
vec![]
}
fn entrypoint(&self) -> String {
"tasmlib_memory_memcpy".to_string()
}
fn code(&self, _: &mut Library) -> Vec<LabelledInstruction> {
let entrypoint = self.entrypoint();
let copy_5_words_loop_label = format!("{entrypoint}_loop_copy_5_words");
let copy_single_words_loop_label = format!("{entrypoint}_loop_copy_single_words");
triton_asm!(
// BEFORE: _ read_source write_dest num_words
// AFTER: _
{entrypoint}:
/* Cap size of memcpy operation */
push {DEFAULT_MAX_DYN_FIELD_SIZE}
dup 1
lt
// _ read_source write_dest (num_words < MAX)
assert error_id {Self::EXCEEDS_MAX_COPY_SIZE_ERROR_ID}
// _ read_source write_dest
pick 2
addi 4
place 2
// _ (read_source + 4) write_dest num_words
call {copy_5_words_loop_label}
// _ (read_source + 4) write_dest remaining_words
pick 2
addi -4
place 2
call {copy_single_words_loop_label}
pop 3
return
// INVARIANT: _ (read_source + 4) write_dest remaining_words
{copy_5_words_loop_label}:
// termination condition
push 5
dup 1
lt
// _ (read_source + 4) write_dest remaining_words (5 > remaining_words)
skiz return
// _ (read_source + 4) write_dest remaining_words
// read
pick 2 // _ write_dest remaining_words (read_source + 4)
read_mem 5 // _ write_dest remaining_words [val4 val3 val2 val1 val0] (read_source - 1)
addi 10 // _ write_dest remaining_words [val4 val3 val2 val1 val0] (read_source + 9)
place 7 // _ (read_source + 9) write_dest remaining_words [val4 val3 val2 val1 val0]
// write
pick 6 // _ (read_source + 9) remaining_words [val4 val3 val2 val1 val0] write_dest
write_mem 5 // _ (read_source + 9) remaining_words (write_dest + 5)
place 1 // _ (read_source + 9) (write_dest + 5) remaining_words
addi -5 // _ (read_source + 9) (write_dest + 5) (remaining_words-5)
recurse
// BEFORE: _ read_source write_dest n
// AFTER: _ (read_source + n) (write_dest + n) 0
{copy_single_words_loop_label}:
dup 0 push 0 eq
skiz return
pick 2
read_mem 1
addi 2
place 3
pick 2
write_mem 1
place 1
addi -1
recurse
)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test_prelude::*;
impl Function for MemCpy {
fn rust_shadow(
&self,
stack: &mut Vec<BFieldElement>,
memory: &mut HashMap<BFieldElement, BFieldElement>,
) {
let len = pop_encodable(stack);
let write_dest = stack.pop().unwrap();
let read_source = stack.pop().unwrap();
assert!(len < DEFAULT_MAX_DYN_FIELD_SIZE);
for i in 0..len {
let offset = bfe!(i);
let maybe_element = memory.get(&(read_source + offset));
let element = maybe_element.copied().unwrap_or_default();
memory.insert(write_dest + offset, element);
}
}
fn pseudorandom_initial_state(
&self,
seed: [u8; 32],
bench_case: Option<BenchmarkCase>,
) -> FunctionInitialState {
let mut rng = StdRng::from_seed(seed);
let len = match bench_case {
Some(BenchmarkCase::CommonCase) => 17,
Some(BenchmarkCase::WorstCase) => 1000,
None => rng.random_range(11..=200),
};
let read_source: BFieldElement = rng.random();
let write_dest: BFieldElement = rng.random();
let mut stack = self.init_stack_for_isolated_run();
stack.extend(bfe_vec![read_source, write_dest, len]);
let memory = (0..len)
.map(|i| (read_source + bfe!(i), rng.random()))
.collect();
FunctionInitialState { stack, memory }
}
}
#[test]
fn rust_shadow() {
ShadowedFunction::new(MemCpy).test();
}
#[proptest]
fn exceeding_max_size_crashes_vm(#[strategy(DEFAULT_MAX_DYN_FIELD_SIZE..)] len: u32) {
// actually filling memory with `len` random elements is a waste of time
let mut stack = MemCpy.init_stack_for_isolated_run();
stack.extend(bfe_vec![0, 0, len]);
let initial_state = InitVmState::with_stack(stack);
test_assertion_failure(
&ShadowedFunction::new(MemCpy),
initial_state,
&[MemCpy::EXCEEDS_MAX_COPY_SIZE_ERROR_ID],
);
}
}
#[cfg(test)]
mod benches {
use super::*;
use crate::test_prelude::*;
#[test]
fn benchmark() {
ShadowedFunction::new(MemCpy).bench();
}
}