tasm_lib/structure/
tasm_object.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
use std::collections::HashMap;
use std::error::Error;

use itertools::Itertools;
use num_traits::ConstZero;
use num_traits::Zero;
pub use tasm_object_derive::TasmObject;
use triton_vm::prelude::*;

use crate::prelude::*;

pub(super) type Result<T> = std::result::Result<T, Box<dyn Error + Send + Sync>>;

pub const DEFAULT_MAX_DYN_FIELD_SIZE: u32 = 1u32 << 28;

/// This trait defines methods for dealing with primitive types and
/// custom-defined struct types from within the VM, assuming they live in memory
/// as they are encoded with [`BFieldCodec`].
///
/// ### Dyn-Compatibility
///
/// This trait is _not_ [dyn-compatible] (previously known as “object safe”).
///
/// [dyn-compatible]: https://doc.rust-lang.org/reference/items/traits.html#dyn-compatibility
pub trait TasmObject: BFieldCodec {
    /// Maximum jump distance for encoded size and length indicators.
    /// The field getters will compare any length or size indicator read
    /// from memory against this value and crash the VM if the indicator
    /// is larger or equal.
    const MAX_OFFSET: u32 = DEFAULT_MAX_DYN_FIELD_SIZE;

    fn label_friendly_name() -> String;

    /// Return the size of `self` and crash if any contained size-indicator
    /// is not valid.
    ///
    /// ```text
    /// BEFORE: _ *object
    /// AFTER:  _ calculated_size
    /// ```
    fn compute_size_and_assert_valid_size_indicator(
        library: &mut Library,
    ) -> Vec<LabelledInstruction>;

    /// Decode as [`Self`].
    fn decode_iter<Itr: Iterator<Item = BFieldElement>>(iterator: &mut Itr) -> Result<Box<Self>>;

    fn decode_from_memory(
        memory: &HashMap<BFieldElement, BFieldElement>,
        address: BFieldElement,
    ) -> Result<Box<Self>> {
        let mut iterator = MemoryIter::new(memory, address);
        Self::decode_iter(&mut iterator)
    }
}

/// This trait defines methods for dealing with custom-defined struct types from
/// within the VM, assuming they live in memory as they are encoded with
/// [`BFieldCodec`].
///
/// The arguments referring to fields are strings. For structs with unnamed fields, the
/// nth field name is implicitly `field_n`.
///
/// ### Dyn-Compatibility
///
/// This trait is _not_ [dyn-compatible] (previously known as “object safe”).
///
/// [dyn-compatible]: https://doc.rust-lang.org/reference/items/traits.html#dyn-compatibility
pub trait TasmStruct: TasmObject {
    /// Tasm code that returns a pointer to the field of the object, assuming:
    ///  - that a pointer to the said object lives on top of the stack;
    ///  - said object has a type that implements the [`TasmObject`] trait;
    ///  - said object lives in memory encoded as [`BFieldCodec`] specifies.
    ///
    /// ```text
    /// BEFORE: _ *object
    /// AFTER:  _ *field
    /// ```
    fn get_field(field_name: &str) -> Vec<LabelledInstruction>;

    /// Tasm code that returns a pointer to the field of the object, along with
    /// the size of that field in number of [`BFieldElement`]s, assuming:
    ///  - that a pointer to the said object lives on top of the stack;
    ///  - said object has a type that implements the [`TasmObject`] trait;
    ///  - said object lives in memory encoded as [`BFieldCodec`] specifies.
    ///
    /// ```text
    /// BEFORE: _ *object
    /// AFTER:  _ *field field_size
    ///```
    ///
    /// See also: `get_field` if you just want the field without the size.
    fn get_field_with_size(field_name: &str) -> Vec<LabelledInstruction>;

    /// Destructure a struct into the pointers to its fields.
    ///
    /// ```text
    /// BEFORE: _ *struct
    /// AFTER:  _ [pointers to all fields]
    /// ```
    ///
    /// # Example
    ///
    /// The example below defines a struct `Foo` and encodes an instance of it into
    /// memory. It then creates a Triton VM program to read and destructure the
    /// `Foo` instance, extracting and outputting the `bar` field. Finally, it runs
    /// the program and asserts that the extracted value matches the original `bar`
    /// value.
    ///
    /// ```no_compile
    /// #  // ^^^^^^^ derive macro `BFieldCodec` does not behave nicely; todo
    /// # use tasm_lib::prelude::*;
    /// # use tasm_lib::triton_vm::prelude::*;
    /// # use tasm_lib::memory::encode_to_memory;
    /// #[derive(BFieldCodec, TasmObject)]
    /// struct Foo {
    ///     bar: u32,
    ///     baz: XFieldElement,
    /// }
    ///
    /// let foo = Foo { bar: 13, baz: xfe!(0) };
    /// let foo_ptr = bfe!(42);
    /// let mut non_determinism = NonDeterminism::default();
    /// encode_to_memory(&mut non_determinism.ram, foo_ptr, &foo);
    ///
    /// let program = triton_program! {
    ///     read_io 1               // _ *foo
    ///     {&Foo::destructure()}   // _ *baz *bar
    ///     read_mem 1              // _ *baz bar (*bar - 1)
    ///     pop 1                   // _ *baz bar
    ///     write_io 1              // _ *baz
    ///     halt
    /// };
    ///
    /// let output = VM::run(program, PublicInput::new(vec![foo_ptr]), non_determinism).unwrap();
    /// let [bar] = output[..] else { panic!() };
    /// assert_eq!(bfe!(foo.bar), bar);
    /// ```
    fn destructure() -> Vec<LabelledInstruction>;
}

pub fn decode_from_memory_with_size<T: BFieldCodec>(
    memory: &HashMap<BFieldElement, BFieldElement>,
    address: BFieldElement,
    size: usize,
) -> Result<Box<T>> {
    let sequence = (0..size)
        .map(|i| address + bfe!(i as u64))
        .map(|b| memory.get(&b).copied().unwrap_or(BFieldElement::ZERO))
        .collect_vec();
    T::decode(&sequence).map_err(|e| e.into())
}

/// Convenience struct for converting between string literals and field name identifiers.
pub trait TasmStructFieldName {
    fn tasm_struct_field_name(&self) -> String;
}

impl TasmStructFieldName for &str {
    fn tasm_struct_field_name(&self) -> String {
        self.to_string()
    }
}

impl TasmStructFieldName for i32 {
    fn tasm_struct_field_name(&self) -> String {
        format!("field_{}", self)
    }
}

/// Convenience macro, so that we don't have to write
/// ```ignore
/// let field_f = <StructWithNamedFields as TasmStruct>::get_field!("f");
/// let field_0 = <StructWithUnnamedFields as TasmStruct>::get_field!("field_0");
/// ```
/// but instead
/// ```ignore
/// let field_f = field!(StructWithNamedFields::f);
/// let field_0 = field!(StructWithUnnamedFields::0);
/// ```
/// .
///
/// **Limitations** The type descriptor cannot have generic type arguments. To get around
/// this, define a new type via `type Custom = Generic<T>` and use that instead.
#[macro_export]
macro_rules! field {
    ($o:ident::$e:ident) => {
        <$o as $crate::structure::tasm_object::TasmStruct>::get_field(
            &$crate::structure::tasm_object::TasmStructFieldName::tasm_struct_field_name(
                &stringify!($e),
            ),
        )
    };
    ($o:ident::$e:expr) => {
        <$o as $crate::structure::tasm_object::TasmStruct>::get_field(
            &$crate::structure::tasm_object::TasmStructFieldName::tasm_struct_field_name(&$e),
        )
    };
}

/// Convenience macro, so that we don't have to write
/// ```ignore
/// let field_f = <StructWithNamedFields as TasmStruct>::get_field_with_size!("f");
/// let field_0 = <StructWithUnnamedFields as TasmStruct>::get_field_with_size!("field_0");
/// ```
/// but instead
/// ```ignore
/// let field_f = field_with_size!(StructWithNamedFields::f);
/// let field_0 = field_with_size!(StructWithUnnamedFields::0);
/// ```
/// and for numbered fields.
///
/// **Limitations** The type descriptor cannot have generic type arguments. To get around
/// this, define a new type via `type Custom = Generic<T>` and use that instead.
#[macro_export]
macro_rules! field_with_size {
    ($o:ident::$e:ident) => {
        <$o as $crate::structure::tasm_object::TasmStruct>
            ::get_field_with_size(
                &$crate::structure::tasm_object::TasmStructFieldName::tasm_struct_field_name(
                    &stringify!($e)
                )
            )
    };
    ($o:ident::$e:expr) => {
        <$o as $crate::structure::tasm_object::TasmStruct>
            ::get_field_with_size(
                &$crate::structure::tasm_object::TasmStructFieldName::tasm_object_field_name(&$e)
            )
    };
}

/// Turns a memory, represented as a `HashMap` from `BFieldElement`s to `BFieldElement`s,
/// along with a starting address, into an iterator over `BFieldElement`s.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
struct MemoryIter<'a> {
    memory: &'a HashMap<BFieldElement, BFieldElement>,
    address: BFieldElement,
}

impl<'a> MemoryIter<'a> {
    fn new(memory: &'a HashMap<BFieldElement, BFieldElement>, address: BFieldElement) -> Self {
        Self { memory, address }
    }
}

impl Iterator for MemoryIter<'_> {
    type Item = BFieldElement;

    fn next(&mut self) -> Option<Self::Item> {
        let element = self
            .memory
            .get(&self.address)
            .copied()
            .unwrap_or(BFieldElement::zero());
        self.address.increment();
        Some(element)
    }
}

#[cfg(test)]
mod tests {
    use arbitrary::Arbitrary;
    use arbitrary::Unstructured;
    use triton_vm::proof_item::FriResponse;

    use super::*;
    use crate::empty_stack;
    use crate::execute_with_terminal_state;
    use crate::list::length::Length;
    use crate::memory::FIRST_NON_DETERMINISTICALLY_INITIALIZED_MEMORY_ADDRESS;
    use crate::test_prelude::*;

    #[derive(Debug, Clone, PartialEq, Eq, BFieldCodec, TasmObject, Arbitrary)]
    struct InnerStruct(XFieldElement, u32);

    #[test]
    fn test_load_and_decode_from_memory() {
        #[derive(Debug, Clone, PartialEq, Eq, BFieldCodec, TasmObject)]
        struct OuterStruct {
            o: InnerStruct,
            a: Vec<Option<bool>>,
            b: InnerStruct,
            p: Vec<Digest>,
            c: BFieldElement,
            l: Vec<Digest>,
        }

        fn pseudorandom_object(seed: [u8; 32]) -> OuterStruct {
            let mut rng = StdRng::from_seed(seed);
            let a = (0..19)
                .map(|_| {
                    if rng.random() {
                        Some(rng.random())
                    } else {
                        None
                    }
                })
                .collect_vec();
            let b0: XFieldElement = rng.random();
            let b1: u32 = rng.random();
            let b2: XFieldElement = rng.random();
            let b3: u32 = rng.random();
            let c: BFieldElement = rng.random();
            let digests_len_p = rng.random_range(0..5);
            let digests_p = (0..digests_len_p).map(|_| rng.random()).collect_vec();
            let digests_len_l = rng.random_range(0..5);
            let digests_l = (0..digests_len_l).map(|_| rng.random()).collect_vec();

            OuterStruct {
                o: InnerStruct(b0, b1),
                a,
                b: InnerStruct(b2, b3),
                p: digests_p,
                c,
                l: digests_l,
            }
        }

        let mut rng = rand::rng();
        let mut memory: HashMap<BFieldElement, BFieldElement> = HashMap::new();

        let object = pseudorandom_object(rng.random());
        let address = rng.random();
        encode_to_memory(&mut memory, address, &object);
        let object_again: OuterStruct = *OuterStruct::decode_from_memory(&memory, address).unwrap();
        assert_eq!(object, object_again);
    }

    /// Test derivation of field getters and manual derivations of the `field!` macro
    mod derive_tests {
        use num_traits::ConstZero;
        use twenty_first::math::x_field_element::EXTENSION_DEGREE;

        use super::*;
        use crate::maybe_write_debuggable_vm_state_to_disk;

        #[test]
        fn load_and_decode_struct_with_named_fields_from_memory() {
            #[derive(BFieldCodec, TasmObject, PartialEq, Eq, Clone, Debug, Arbitrary)]
            struct NamedFields {
                a: Digest,
                b: BFieldElement,
                c: u128,
                d: Vec<Digest>,
                e: XFieldElement,
                f: Vec<u32>,
            }

            let mut randomness = [0u8; 100000];
            rand::rng().fill_bytes(&mut randomness);
            let mut unstructured = Unstructured::new(&randomness);
            let random_object = NamedFields::arbitrary(&mut unstructured).unwrap();
            let random_address: u64 = rand::rng().random_range(0..(1 << 30));
            let address = random_address.into();
            let mut memory: HashMap<BFieldElement, BFieldElement> = HashMap::new();

            encode_to_memory(&mut memory, address, &random_object);
            let object_again: NamedFields =
                *NamedFields::decode_from_memory(&memory, address).unwrap();
            assert_eq!(random_object, object_again);

            let mut library = Library::new();
            let length_d = library.import(Box::new(Length));
            let length_f = library.import(Box::new(Length));
            let code = triton_asm! {
                    // _ *obj
                    dup 0 {&field!(NamedFields::d)}

                    // _ *obj *d
                    swap 1
                   {&field!(NamedFields::f)}
                    // _ *d *f

                    call {length_f}
                    // _ *d f_length

                    swap 1
                    call {length_d}
                    // _ f_length d_length
            };

            let mut stack = get_final_stack(&random_object, library, code);
            let extracted_d_length = stack.pop().unwrap().value() as usize;
            let extracted_f_length = stack.pop().unwrap().value() as usize;

            assert_eq!(random_object.d.len(), extracted_d_length);
            assert_eq!(random_object.f.len(), extracted_f_length);
        }

        #[derive(BFieldCodec, TasmObject, PartialEq, Eq, Clone, Debug, Arbitrary)]
        struct TupleStruct(
            Vec<XFieldElement>,
            InnerStruct,
            u32,
            Vec<Digest>,
            Digest,
            Vec<BFieldElement>,
            Digest,
        );

        fn prepare_random_tuple_struct(seed: [u8; 32]) -> TupleStruct {
            let mut rng = StdRng::from_seed(seed);
            let mut randomness = [0u8; 100000];
            rng.fill_bytes(&mut randomness);
            let mut unstructured = Unstructured::new(&randomness);
            TupleStruct::arbitrary(&mut unstructured).unwrap()
        }

        /// Verify correct field-macro behavior when the size-indicators have
        /// illegal values.
        fn prop_negative_test_messed_up_size_indicators<T: BFieldCodec>(
            program: Program,
            tuple_struct: &T,
            obj_pointer: BFieldElement,
            offset_for_manipulated_si: BFieldElement,
            expected_stack: &[BFieldElement],
            also_run_negative_tests_for_correct_size_indicators: bool,
        ) {
            // No-messed works
            let mut no_messed_memory = HashMap::new();
            encode_to_memory(&mut no_messed_memory, obj_pointer, tuple_struct);
            let no_messed_nd = NonDeterminism::default().with_ram(no_messed_memory.clone());
            let mut vm_state_pass = VMState::new(
                program.clone(),
                PublicInput::default(),
                no_messed_nd.clone(),
            );
            maybe_write_debuggable_vm_state_to_disk(&vm_state_pass);
            vm_state_pass.run().unwrap();

            let expected_output_len = expected_stack.len();
            let actual_stack = (0..expected_output_len)
                .map(|i| vm_state_pass.op_stack[i])
                .collect_vec();
            assert_eq!(expected_stack, actual_stack);

            // Messed-up encoding fails: Too big but still u32
            let mut messed_up_memory = no_messed_memory.clone();
            messed_up_memory.insert(
                obj_pointer + offset_for_manipulated_si,
                bfe!(TupleStruct::MAX_OFFSET + 1),
            );
            let messed_up_nd_0 = NonDeterminism::default().with_ram(messed_up_memory.clone());
            let mut vm_state_fail0 = VMState::new(
                program.clone(),
                PublicInput::default(),
                messed_up_nd_0.clone(),
            );
            maybe_write_debuggable_vm_state_to_disk(&vm_state_fail0);
            let instruction_error0 = vm_state_fail0.run().unwrap_err();
            assert!(matches!(
                instruction_error0,
                InstructionError::AssertionFailed(_)
            ));

            // Messed-up encoding fails: Negative sizes banned
            let negative_number = bfe!(-42);
            messed_up_memory = no_messed_memory.clone();
            messed_up_memory.insert(obj_pointer + offset_for_manipulated_si, negative_number);
            let messed_up_nd_1 = NonDeterminism::default().with_ram(messed_up_memory.clone());
            let mut vm_state_fail1 = VMState::new(
                program.clone(),
                PublicInput::default(),
                messed_up_nd_1.clone(),
            );
            maybe_write_debuggable_vm_state_to_disk(&vm_state_fail1);
            let instruction_error1 = vm_state_fail1.run().unwrap_err();
            let expected_err =
                InstructionError::OpStackError(OpStackError::FailedU32Conversion(negative_number));
            assert_eq!(expected_err, instruction_error1);

            // Messed-up encoding fails: Size-indicator is within allowed
            // range but does not have the correct value. This is not checked
            // by all the `TasmObject` trait functions, so these checks are run
            // conditionally.
            if also_run_negative_tests_for_correct_size_indicators {
                // Messed-up encoding fails: Size-indicator is *one* too big
                messed_up_memory = no_messed_memory.clone();
                let address_for_manipulated_si = obj_pointer + offset_for_manipulated_si;
                messed_up_memory.insert(
                    address_for_manipulated_si,
                    messed_up_memory[&address_for_manipulated_si] + bfe!(1),
                );
                let messed_up_nd_2 = NonDeterminism::default().with_ram(messed_up_memory.clone());
                let mut vm_state_fail2 = VMState::new(
                    program.clone(),
                    PublicInput::default(),
                    messed_up_nd_2.clone(),
                );
                maybe_write_debuggable_vm_state_to_disk(&vm_state_fail2);
                let instruction_error2 = vm_state_fail2.run().unwrap_err();
                assert!(matches!(
                    instruction_error2,
                    InstructionError::AssertionFailed(_)
                ));

                // Messed-up encoding fails: Size-indicator is *one* too small
                messed_up_memory = no_messed_memory.clone();
                messed_up_memory.insert(
                    address_for_manipulated_si,
                    messed_up_memory[&address_for_manipulated_si] - bfe!(1),
                );
                let messed_up_nd_3 = NonDeterminism::default().with_ram(messed_up_memory.clone());
                let mut vm_state_fail3 =
                    VMState::new(program, PublicInput::default(), messed_up_nd_3.clone());
                maybe_write_debuggable_vm_state_to_disk(&vm_state_fail3);
                let instruction_error3 = vm_state_fail3.run().unwrap_err();
                assert!(matches!(
                    instruction_error3,
                    InstructionError::AssertionFailed(_)
                ));
            }
        }

        #[test]
        fn mess_with_size_indicator_field_getter_named_fields_negative_test() {
            #[derive(BFieldCodec, TasmObject, PartialEq, Eq, Clone, Debug, Arbitrary)]
            struct WithNamedFields {
                a: Vec<Digest>,
                b: Vec<BFieldElement>,
                c: Digest,
                d: Vec<XFieldElement>,
            }

            fn prepare_random_object(seed: [u8; 32]) -> WithNamedFields {
                let mut rng = StdRng::from_seed(seed);
                let mut randomness = [0u8; 100000];
                rng.fill_bytes(&mut randomness);
                let mut unstructured = Unstructured::new(&randomness);
                WithNamedFields::arbitrary(&mut unstructured).unwrap()
            }

            const START_OF_OBJ: BFieldElement = BFieldElement::new(800);
            let random_object = prepare_random_object(rand::random());
            let third_to_last_field = field!(WithNamedFields::c);
            let code_using_field_getter = triton_asm!(
                // _

                push {START_OF_OBJ}
                // _ *with_named_fields

                {&third_to_last_field}
                // _ *digest

                addi {Digest::LEN - 1}
                read_mem {Digest::LEN}
                pop 1
                // _ [digest]

                halt
            );

            let expected_stack_benign = random_object.c.values();
            let offset_for_manipulated_si = bfe!(0);
            prop_negative_test_messed_up_size_indicators(
                Program::new(&code_using_field_getter),
                &random_object,
                START_OF_OBJ,
                offset_for_manipulated_si,
                &expected_stack_benign,
                false,
            );
        }

        #[test]
        fn mess_with_size_indicators_field_and_size_getter_negative_test() {
            const START_OF_OBJ: BFieldElement = BFieldElement::ZERO;
            let random_object = prepare_random_tuple_struct(rand::random());
            let fourth_to_last_field = field_with_size!(TupleStruct::field_3);
            let code_using_field_and_size_getter = triton_asm!(
                // _
                push { START_OF_OBJ }
                // _ *tuple_struct

                {&fourth_to_last_field}
                // _ *digests digests_size

                swap 1
                // _ digests_size *digests

                read_mem 1
                pop 1
                // _ digests_size digests_len

                halt
            );

            let expected_field_size = bfe!(random_object.3.len() as u64 * Digest::LEN as u64 + 1);
            let expected_list_len = bfe!(random_object.3.len() as u64);
            let expected_stack_benign_nd = [expected_list_len, expected_field_size];
            prop_negative_test_messed_up_size_indicators(
                Program::new(&code_using_field_and_size_getter),
                &random_object,
                START_OF_OBJ,
                bfe!(Digest::LEN as u64),
                &expected_stack_benign_nd,
                false,
            );
        }

        #[test]
        fn mess_with_size_indicators_field_getter_negative_test() {
            const START_OF_OBJ: BFieldElement = BFieldElement::ZERO;
            let random_object = prepare_random_tuple_struct(rand::random());
            let third_to_last_field = field!(TupleStruct::field_4);
            let code_using_field_getter = triton_asm!(
                // _

                push {START_OF_OBJ}
                // _ *tuple_struct

                {&third_to_last_field}
                // _ *digest

                addi {Digest::LEN - 1}
                read_mem {Digest::LEN}
                pop 1
                // _ [digest]

                halt
            );

            let expected_output_benign_nd = random_object.4.values();
            prop_negative_test_messed_up_size_indicators(
                Program::new(&code_using_field_getter),
                &random_object,
                START_OF_OBJ,
                bfe!(Digest::LEN as u64),
                &expected_output_benign_nd,
                false,
            );
        }

        #[test]
        fn mess_with_size_indicators_size_indicator_validity_check_negative_test() {
            let mut library = Library::default();
            const OBJ_POINTER: BFieldElement = BFieldElement::new(422);
            let random_object = prepare_random_tuple_struct(rand::random());
            let assert_size_indicator_validity =
                TupleStruct::compute_size_and_assert_valid_size_indicator(&mut library);
            let code_using_size_integrity_code = triton_asm!(
                // _

                push {OBJ_POINTER}
                // _ *tuple_struct

                {&assert_size_indicator_validity}
                // _ encoding_length

                halt
            );

            let expected_stack_benign = [bfe!(random_object.encode().len() as u64)];

            // mess up size-indicator of all size-indicators
            const SIZE_OF_SIZE_INDICATOR: usize = 1;
            let size_indicator_for_bfe_vec = Digest::LEN;
            let size_indicator_for_digest_vec_ptr = size_indicator_for_bfe_vec
                + random_object.5.encode().len()
                + SIZE_OF_SIZE_INDICATOR
                + Digest::LEN;
            let size_indicator_for_xfe_vec = size_indicator_for_digest_vec_ptr
                + random_object.3.encode().len()
                + SIZE_OF_SIZE_INDICATOR
                + 1
                + 4;

            for size_indicator_offset in [
                size_indicator_for_bfe_vec,
                size_indicator_for_digest_vec_ptr,
                size_indicator_for_xfe_vec,
            ] {
                prop_negative_test_messed_up_size_indicators(
                    Program::new(&code_using_size_integrity_code),
                    &random_object,
                    OBJ_POINTER,
                    bfe!(size_indicator_offset as u64),
                    &expected_stack_benign,
                    true,
                );
            }
        }

        #[test]
        fn mess_with_size_indicators_checked_size_list_w_dyn_sized_elems_negative_test() {
            #[derive(BFieldCodec, TasmObject, Debug, Clone, Arbitrary)]
            struct ListDynSizedElements {
                a: Vec<Digest>,
                b: Vec<Vec<Digest>>,
                c: Vec<XFieldElement>,
            }

            fn random_struct(seed: [u8; 32]) -> ListDynSizedElements {
                let mut rng = StdRng::from_seed(seed);
                let mut randomness = [0u8; 100000];
                rng.fill_bytes(&mut randomness);
                let mut unstructured = Unstructured::new(&randomness);
                ListDynSizedElements::arbitrary(&mut unstructured).unwrap()
            }

            const OBJ_POINTER: BFieldElement = BFieldElement::new(423);
            let mut library = Library::default();
            let assert_size_indicator_validity =
                ListDynSizedElements::compute_size_and_assert_valid_size_indicator(&mut library);

            let imports = library.all_imports();
            let code_using_size_integrity_code = triton_asm!(
                // _

                push {OBJ_POINTER}
                // _ *list_dyn_sized_elems

                {&assert_size_indicator_validity}
                // _ encoding_length

                halt

                {&imports}
            );

            let random_obj = random_struct(rand::random());
            let expected_stack_benign = [bfe!(random_obj.encode().len() as u64)];

            const SIZE_OF_SIZE_INDICATOR: usize = 1;
            const SIZE_OF_LENGTH_INDICATOR: usize = 1;
            let offset_for_vec_vec_digest_size_indicator = random_obj.c.len() * EXTENSION_DEGREE
                + SIZE_OF_SIZE_INDICATOR
                + SIZE_OF_LENGTH_INDICATOR;
            prop_negative_test_messed_up_size_indicators(
                Program::new(&code_using_size_integrity_code),
                &random_obj,
                OBJ_POINTER,
                bfe!(offset_for_vec_vec_digest_size_indicator as u64),
                &expected_stack_benign,
                true,
            )
        }

        #[test]
        fn validate_total_size_statically_sized_struct() {
            #[derive(BFieldCodec, TasmObject, Debug, Clone, Copy)]
            struct StaticallySizedStruct {
                a: Digest,
                b: Digest,
                c: XFieldElement,
            }
            const OBJ_POINTER: BFieldElement = BFieldElement::new(422);
            let random_object = StaticallySizedStruct {
                a: rand::random(),
                b: rand::random(),
                c: rand::random(),
            };

            let mut library = Library::default();
            let assert_size_indicator_validity =
                StaticallySizedStruct::compute_size_and_assert_valid_size_indicator(&mut library);
            let code_using_size_integrity_code = triton_asm!(
                // _

                push {OBJ_POINTER}
                // _ *tuple_struct

                {&assert_size_indicator_validity}
                // _ encoding_length

                halt
            );

            let program = Program::new(&code_using_size_integrity_code);
            let mut no_messed_memory = HashMap::new();
            encode_to_memory(&mut no_messed_memory, OBJ_POINTER, &random_object);
            let no_messed_nd = NonDeterminism::default().with_ram(no_messed_memory.clone());
            let mut vm_state = VMState::new(program, PublicInput::default(), no_messed_nd.clone());
            maybe_write_debuggable_vm_state_to_disk(&vm_state);
            vm_state.run().unwrap();

            let expected_stack = vec![bfe!(random_object.encode().len() as u64)];
            let actual_stack = vec![vm_state.op_stack[0]];
            assert_eq!(expected_stack, actual_stack);
        }

        #[test]
        fn load_and_decode_tuple_structs_from_memory() {
            let random_object = prepare_random_tuple_struct(rand::random());
            let random_address: u64 = rand::rng().random_range(0..(1 << 30));
            let address = random_address.into();

            let mut memory: HashMap<BFieldElement, BFieldElement> = HashMap::new();
            encode_to_memory(&mut memory, address, &random_object);
            let object_again: TupleStruct =
                *TupleStruct::decode_from_memory(&memory, address).unwrap();
            assert_eq!(random_object, object_again);

            // code snippet to access object's fields
            let mut library = Library::new();
            let list_length = library.import(Box::new(Length));
            let code_for_list_lengths = triton_asm! {
                // _ *obj

                dup 0
                {&field!(TupleStruct::3)} // _ *obj *digests
                swap 1                    // _ *digests *obj

                dup 0
                {&field!(TupleStruct::5)} // _ *digests *obj *bfes
                swap 1                    // _ *digests *bfes *obj

                {&field!(TupleStruct::0)} // _ *digests *bfes *xfes
                call {list_length}        // _ *digests *bfes xfe_count
                swap 2                    // _ xfe_count *bfes *digests
                call {list_length}        // _ xfe_count *bfes digest_count
                swap 1
                call {list_length}        // _ xfe_count digest_count bfe_count
            };

            // extract list lengths
            let mut stack = get_final_stack(&random_object, library, code_for_list_lengths);
            let extracted_bfe_count = stack.pop().unwrap().value() as usize;
            let extracted_digest_count = stack.pop().unwrap().value() as usize;
            let extracted_xfe_count = stack.pop().unwrap().value() as usize;

            // assert correct lengths
            assert_eq!(random_object.3.len(), extracted_digest_count);
            assert_eq!(random_object.5.len(), extracted_bfe_count);
            assert_eq!(random_object.0.len(), extracted_xfe_count);
        }

        #[test]
        fn test_fri_response() {
            let mut rng = rand::rng();
            let num_digests = 50;
            let num_leafs = 20;

            // generate object
            let authentication_structure = (0..num_digests)
                .map(|_| rng.random::<Digest>())
                .collect_vec();
            let revealed_leafs = (0..num_leafs)
                .map(|_| rng.random::<XFieldElement>())
                .collect_vec();
            let fri_response = FriResponse {
                auth_structure: authentication_structure,
                revealed_leaves: revealed_leafs,
            };

            // code snippet to access object's fields
            let mut library = Library::new();
            let get_authentication_structure = field!(FriResponse::auth_structure);
            let list_length = library.import(Box::new(Length));
            let get_revealed_leafs = field!(FriResponse::revealed_leaves);
            let code = triton_asm! {
                // _ *fri_response
                dup 0 // _ *fri_response *fri_response

                {&get_authentication_structure} // _ *fri_response *authentication_structure
                swap 1                          // _ *authentication_structure *fri_response
                {&get_revealed_leafs}           // _ *authentication_structure *revealed_leafs

                swap 1                          // _ *revealed_leafs *authentication_structure
                call {list_length}              // _ *revealed_leafs num_digests
                swap 1                          // _ num_digests *revealed_leafs
                call {list_length}              // _ num_digests num_leafs

            };

            // extract list lengths
            let mut stack = get_final_stack(&fri_response, library, code);
            let extracted_xfes_length = stack.pop().unwrap().value() as usize;
            let extracted_digests_length = stack.pop().unwrap().value() as usize;

            // assert correct lengths
            assert_eq!(num_digests, extracted_digests_length);
            assert_eq!(num_leafs, extracted_xfes_length);
        }

        /// Helper function for testing field getters. Only returns the final stack.
        fn get_final_stack<T: BFieldCodec + Clone>(
            obj: &T,
            library: Library,
            code: Vec<LabelledInstruction>,
        ) -> Vec<BFieldElement> {
            // initialize memory and stack
            let mut memory: HashMap<BFieldElement, BFieldElement> = HashMap::new();
            let random_address: u64 = rand::rng().random_range(0..(1 << 30));
            let address = random_address.into();

            encode_to_memory(&mut memory, address, obj);
            let stack = [empty_stack(), vec![address]].concat();

            // link by hand
            let entrypoint = "entrypoint";
            let library_code = library.all_imports();
            let instructions = triton_asm!(
                call {entrypoint}
                halt

                {entrypoint}:
                    {&code}
                    return

                {&library_code}
            );

            let program = Program::new(&instructions);
            let nondeterminism = NonDeterminism::new(vec![]).with_ram(memory);
            let final_state =
                execute_with_terminal_state(program, &[], &stack, &nondeterminism, None).unwrap();
            final_state.op_stack.stack
        }
    }

    #[cfg(test)]
    mod destructure {
        use super::*;
        use crate::neptune::neptune_like_types_for_tests::MmrSuccessorProofLookalike;
        use crate::neptune::neptune_like_types_for_tests::TransactionKernelLookalike;
        use crate::neptune::neptune_like_types_for_tests::UpdateWitnessLookalike;
        use crate::twenty_first::util_types::mmr::mmr_accumulator::MmrAccumulator;

        #[test]
        fn unit_struct() {
            #[derive(BFieldCodec, TasmObject)]
            struct Empty {}

            let sentinel = bfe!(0xdead_face_u64);
            let program = triton_program! {
                push {sentinel}         // _ s
                push 0                  // _ s 0
                {&Empty::destructure()} // _ s
                push {sentinel}         // _ s s
                eq                      // _ (s == s)
                assert                  // _
                halt
            };
            VM::run(program, PublicInput::default(), NonDeterminism::default()).unwrap();
        }

        mod one_field {
            use super::*;

            #[derive(Debug, Copy, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleStatic(u32);

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleDynamic(Vec<u32>);

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleNested(Vec<Vec<u32>>);

            #[derive(Debug, Copy, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedStatic {
                field: u32,
            }

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedDynamic {
                field: Vec<u32>,
            }

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedNested {
                field: Vec<Vec<u32>>,
            }

            // This macro is a little bit cursed due to the `$post_process`. Since it is
            // very limited in scope, I say it's better than duplicating essentially the
            // same code six times. If you want to extend the scope of this macro, please
            // re-design it.
            macro_rules! one_field_test_case {
                (fn $test_name:ident for $ty:ident: $f_name:tt $($post_process:tt)*) => {
                    #[proptest]
                    fn $test_name(
                        #[strategy(arb())] foo: $ty,
                        #[strategy(arb())] ptr: BFieldElement,
                    ) {
                        let program = triton_program! {
                            push {ptr}
                            {&$ty::destructure()}
                            read_mem 1 pop 1 write_io 1
                            halt
                        };

                        let mut non_determinism = NonDeterminism::default();
                        encode_to_memory(&mut non_determinism.ram, ptr, &foo);

                        let output = VM::run(program, PublicInput::default(), non_determinism)?;
                        let [output] = output[..] else {
                            return Err(TestCaseError::Fail("unexpected output".into()));
                        };

                        let $ty { $f_name: the_field } = foo;
                        let expected = the_field$($post_process)*;
                        prop_assert_eq!(bfe!(expected), output);
                    }
                };
            }

            one_field_test_case!( fn tuple_static  for TupleStatic:  0 );
            one_field_test_case!( fn tuple_dynamic for TupleDynamic: 0.len() );
            one_field_test_case!( fn tuple_nested  for TupleNested:  0.len() );
            one_field_test_case!( fn named_static  for NamedStatic:  field );
            one_field_test_case!( fn named_dynamic for NamedDynamic: field.len() );
            one_field_test_case!( fn named_nested  for NamedNested:  field.len() );
        }

        mod two_fields {
            use super::*;

            #[derive(Debug, Copy, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleStatStat(u32, u32);

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleStatDyn(u32, Vec<u32>);

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleDynStat(Vec<u32>, u32);

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleDynDyn(Vec<u32>, Vec<u32>);

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleStatNest(u32, Vec<Vec<u32>>);

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleNestStat(Vec<Vec<u32>>, u32);

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct TupleNestNest(Vec<Vec<u32>>, Vec<Vec<u32>>);

            #[derive(Debug, Copy, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedStatStat {
                a: u32,
                b: u32,
            }

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedStatDyn {
                a: u32,
                b: Vec<u32>,
            }

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedDynStat {
                a: Vec<u32>,
                b: u32,
            }

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedDynDyn {
                a: Vec<u32>,
                b: Vec<u32>,
            }

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedStatNest {
                a: u32,
                b: Vec<Vec<u32>>,
            }

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedNestStat {
                a: Vec<Vec<u32>>,
                b: u32,
            }

            #[derive(Debug, Clone, BFieldCodec, TasmObject, Arbitrary)]
            struct NamedNestNest {
                a: Vec<Vec<u32>>,
                b: Vec<Vec<u32>>,
            }

            // This macro is a little bit cursed due to the `$post_process`es. Since it is
            // very limited in scope, I say it's better than duplicating essentially the
            // same code 14 times. If you want to extend the scope of this macro, please
            // re-design it.
            macro_rules! two_fields_test_case {
                (fn $test_name:ident for $ty:ident:
                    ($f_name_0:tt $($post_process_0:tt)*)
                    ($f_name_1:tt $($post_process_1:tt)*)
                ) => {
                    #[proptest]
                    fn $test_name(
                        #[strategy(arb())] foo: $ty,
                        #[strategy(arb())] ptr: BFieldElement,
                    ) {
                        let program = triton_program! {
                            push {ptr}
                            {&$ty::destructure()}
                            read_mem 1 pop 1 write_io 1
                            read_mem 1 pop 1 write_io 1
                            halt
                        };

                        let mut non_determinism = NonDeterminism::default();
                        encode_to_memory(&mut non_determinism.ram, ptr, &foo);

                        let output = VM::run(program, PublicInput::default(), non_determinism)?;
                        let [output_0, output_1] = output[..] else {
                            return Err(TestCaseError::Fail("unexpected output".into()));
                        };

                        let $ty { $f_name_0: field_0, $f_name_1: field_1 } = foo;
                        let expected_0 = field_0$($post_process_0)*;
                        let expected_1 = field_1$($post_process_1)*;
                        prop_assert_eq!(bfe!(expected_0), output_0);
                        prop_assert_eq!(bfe!(expected_1), output_1);
                    }
                };
            }

            two_fields_test_case!( fn tuple_stat_stat for TupleStatStat: (0) (1) );
            two_fields_test_case!( fn tuple_stat_dyn  for TupleStatDyn:  (0) (1.len()) );
            two_fields_test_case!( fn tuple_dyn_stat  for TupleDynStat:  (0.len()) (1) );
            two_fields_test_case!( fn tuple_dyn_dyn   for TupleDynDyn:   (0.len()) (1.len()) );
            two_fields_test_case!( fn tuple_stat_nest for TupleStatNest: (0) (1.len()) );
            two_fields_test_case!( fn tuple_nest_stat for TupleNestStat: (0.len()) (1) );
            two_fields_test_case!( fn tuple_nest_nest for TupleNestNest: (0.len()) (1.len()) );
            two_fields_test_case!( fn named_stat_stat for NamedStatStat: (a) (b) );
            two_fields_test_case!( fn named_stat_dyn  for NamedStatDyn:  (a) (b.len()) );
            two_fields_test_case!( fn named_dyn_stat  for NamedDynStat:  (a.len()) (b) );
            two_fields_test_case!( fn named_dyn_dyn   for NamedDynDyn:   (a.len()) (b.len()) );
            two_fields_test_case!( fn named_stat_nest for NamedStatNest: (a) (b.len()) );
            two_fields_test_case!( fn named_nest_stat for NamedNestStat: (a.len()) (b) );
            two_fields_test_case!( fn named_nest_nest for NamedNestNest: (a.len()) (b.len()) );
        }

        #[test]
        fn all_static_dynamic_neighbor_combinations() {
            /// A struct where all neighbor combinations of fields with
            /// {static, dynamic}×{static, dynamic} sizes occur.
            #[derive(Debug, BFieldCodec, TasmObject, Eq, PartialEq)]
            struct Foo {
                a: XFieldElement,
                b: Vec<Digest>,
                c: Vec<Vec<XFieldElement>>,
                d: u128,
                e: u64,
            }

            let foo = Foo {
                a: xfe!([42, 43, 44]),
                b: vec![Digest::new(bfe_array![45, 46, 47, 48, 49])],
                c: vec![vec![], xfe_vec![[50, 51, 52]]],
                d: 53 + (54 << 32) + (55 << 64) + (56 << 96),
                e: 57 + (58 << 32),
            };

            let foo_encoding = bfe_vec![
                /* e: 00..=01 */ 57, 58, //
                /* d: 02..=05 */ 53, 54, 55, 56, //
                /* c: 06..=14 */ 8, 2, 1, 0, 4, 1, 50, 51, 52, //
                /* b: 15..=21 */ 6, 1, 45, 46, 47, 48, 49, //
                /* a: 22..=24 */ 42, 43, 44 //
            ];
            debug_assert_eq!(foo_encoding, foo.encode(),);

            let foo_ptr = bfe!(100);
            let mut non_determinism = NonDeterminism::default();
            encode_to_memory(&mut non_determinism.ram, foo_ptr, &foo);

            let program = triton_program! {
                read_io 1               // _ *foo
                {&Foo::destructure()}   // _ *e *d *c *b *a
                write_io 5              // _
                halt
            };

            let input = PublicInput::new(vec![foo_ptr]);
            let output = VM::run(program, input, non_determinism.clone()).unwrap();
            let [a_ptr, b_ptr, c_ptr, d_ptr, e_ptr] = output[..] else {
                panic!("expected 5 pointers");
            };

            assert_eq!(foo_ptr + bfe!(22), a_ptr);
            assert_eq!(foo_ptr + bfe!(16), b_ptr);
            assert_eq!(foo_ptr + bfe!(7), c_ptr);
            assert_eq!(foo_ptr + bfe!(2), d_ptr);
            assert_eq!(foo_ptr + bfe!(0), e_ptr);

            let a = *XFieldElement::decode_from_memory(&non_determinism.ram, a_ptr).unwrap();
            let b = *Vec::decode_from_memory(&non_determinism.ram, b_ptr).unwrap();
            let c = *Vec::decode_from_memory(&non_determinism.ram, c_ptr).unwrap();
            let d = *u128::decode_from_memory(&non_determinism.ram, d_ptr).unwrap();
            let e = *u64::decode_from_memory(&non_determinism.ram, e_ptr).unwrap();
            let foo_again = Foo { a, b, c, d, e };
            assert_eq!(foo, foo_again);
        }

        #[proptest]
        fn destructure_update_witness(
            #[strategy(arb())] witness: UpdateWitnessLookalike,
            #[strategy(arb())] witness_ptr: BFieldElement,
        ) {
            let mut non_determinism = NonDeterminism::default();
            encode_to_memory(&mut non_determinism.ram, witness_ptr, &witness);

            let program = triton_program! {
                read_io 1
                {&UpdateWitnessLookalike::destructure()}
                write_io 5 write_io 5 write_io 4
                halt
            };

            let input = PublicInput::new(vec![witness_ptr]);
            let output = VM::run(program, input, non_determinism.clone())?;
            let mut output = output.into_iter();
            let mut next_ptr = || output.next().unwrap();
            let ram = &non_determinism.ram;

            let old_kernel =
                *TransactionKernelLookalike::decode_from_memory(ram, next_ptr()).unwrap();
            let new_kernel =
                *TransactionKernelLookalike::decode_from_memory(ram, next_ptr()).unwrap();
            let old_kernel_mast_hash = *Digest::decode_from_memory(ram, next_ptr()).unwrap();
            let new_kernel_mast_hash = *Digest::decode_from_memory(ram, next_ptr()).unwrap();
            let old_proof = *Proof::decode_from_memory(ram, next_ptr()).unwrap();
            let new_swbfi_bagged = *Digest::decode_from_memory(ram, next_ptr()).unwrap();
            let new_aocl = *MmrAccumulator::decode_from_memory(ram, next_ptr()).unwrap();
            let new_swbfa_hash = *Digest::decode_from_memory(ram, next_ptr()).unwrap();
            let old_swbfi_bagged = *Digest::decode_from_memory(ram, next_ptr()).unwrap();
            let old_aocl = *MmrAccumulator::decode_from_memory(ram, next_ptr()).unwrap();
            let old_swbfa_hash = *Digest::decode_from_memory(ram, next_ptr()).unwrap();
            let aocl_successor_proof =
                *MmrSuccessorProofLookalike::decode_from_memory(ram, next_ptr()).unwrap();
            let outputs_hash = *Digest::decode_from_memory(ram, next_ptr()).unwrap();
            let public_announcements_hash = *Digest::decode_from_memory(ram, next_ptr()).unwrap();

            let witness_again = UpdateWitnessLookalike {
                old_kernel,
                new_kernel,
                old_kernel_mast_hash,
                new_kernel_mast_hash,
                old_proof,
                new_swbfi_bagged,
                new_aocl,
                new_swbfa_hash,
                old_swbfi_bagged,
                old_aocl,
                old_swbfa_hash,
                aocl_successor_proof,
                outputs_hash,
                public_announcements_hash,
            };
            prop_assert_eq!(witness, witness_again);
        }
    }

    #[test]
    fn test_option() {
        let mut rng = rand::rng();
        let n = rng.random_range(0..5);
        let v = (0..n).map(|_| rng.random::<Digest>()).collect_vec();
        let mut ram: HashMap<BFieldElement, BFieldElement> = HashMap::new();
        let some_address = FIRST_NON_DETERMINISTICALLY_INITIALIZED_MEMORY_ADDRESS;
        let none_address = encode_to_memory(&mut ram, some_address, &Some(v.clone()));
        encode_to_memory(&mut ram, none_address, &Option::<Vec<Digest>>::None);

        let some_decoded = *Option::<Vec<Digest>>::decode_from_memory(&ram, some_address).unwrap();
        assert!(some_decoded.is_some());
        assert_eq!(some_decoded.unwrap(), v);

        let none_decoded = *Option::<Vec<Digest>>::decode_from_memory(&ram, none_address).unwrap();
        assert!(none_decoded.is_none());
    }

    #[proptest]
    fn iter_decoding_too_short_sequence_does_not_panic(
        #[strategy(arb())] object: Vec<Vec<Digest>>,
        num_elements_to_drop: usize,
    ) {
        let encoding = object.encode();
        let encoding_len = encoding.len();
        let num_elements_to_drop = num_elements_to_drop % encoding_len;
        prop_assume!(num_elements_to_drop != 0);

        let mut object_iter = encoding.into_iter().dropping_back(num_elements_to_drop);
        prop_assert!(<Vec<Vec<Digest>>>::decode_iter(&mut object_iter).is_err());
    }
}