tasm_lib/arithmetic/u64/shift_right.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
use std::collections::HashMap;
use triton_vm::prelude::*;
use crate::prelude::*;
use crate::traits::basic_snippet::Reviewer;
use crate::traits::basic_snippet::SignOffFingerprint;
/// [Shift right][shr] for unsigned 64-bit integers.
///
/// # Behavior
///
/// ```text
/// BEFORE: _ [arg: u64] shift_amount
/// AFTER: _ [result: u64]
/// ```
///
/// # Preconditions
///
/// - input argument `arg` is properly [`BFieldCodec`] encoded
/// - input argument `shift_amount` is in `0..64`
///
/// # Postconditions
///
/// - the output is the input argument `arg` bit-shifted to the right by
/// input argument `shift_amount`
/// - the output is properly [`BFieldCodec`] encoded
///
/// [shr]: core::ops::Shr
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct ShiftRight;
impl ShiftRight {
pub const SHIFT_AMOUNT_TOO_BIG_ERROR_ID: i128 = 330;
}
impl BasicSnippet for ShiftRight {
fn inputs(&self) -> Vec<(DataType, String)> {
let arg = (DataType::U64, "arg".to_string());
let shift_amount = (DataType::U32, "shift_amount".to_string());
vec![arg, shift_amount]
}
fn outputs(&self) -> Vec<(DataType, String)> {
vec![(DataType::U64, "shifted_arg".to_string())]
}
fn entrypoint(&self) -> String {
"tasmlib_arithmetic_u64_shift_right".to_string()
}
fn code(&self, _: &mut Library) -> Vec<LabelledInstruction> {
let entrypoint = self.entrypoint();
let shift_amount_gt_32 = format!("{entrypoint}_shift_amount_gt_32");
triton_asm!(
// BEFORE: _ arg_hi arg_lo shift
// AFTER: _ (arg >> shift)_hi (arg >> shift)_lo
{entrypoint}:
/* bounds check */
push 64
dup 1
lt
assert error_id {Self::SHIFT_AMOUNT_TOO_BIG_ERROR_ID}
// _ arg_hi arg_lo shift
/* special case if shift amount is greater than 32 */
dup 0
push 32
lt
// _ arg_hi arg_lo shift (32 < shift)
skiz
call {shift_amount_gt_32}
// _ arg_hi arg_lo shift
/* Over a finite field, both right shift and integer division are difficult.
* However, integer multiplication and therefore left shift are easy, provided
* the field elements are within the right ranges.
* General strategy: multiply by the correct power of 2 to shift left by
* (32 - shift_amount), then `split` and throw away the low limb. For example,
* 0b10_0001 >> 5 gives 0b1, as does a left shift by 27 after throwing away the
* low limb:
*
* 0b10_0001 << 27 = 0b1_0000_1000_0000_0000_0000_0000_0000_0000
* ╰─────────────╴ low limb ╶────────────╯
*/
push -1
mul
addi 32
// _ arg_hi arg_lo (32 - shift)
push 2
pow
// _ arg_hi arg_lo (2^(32 - shift))
pick 2
dup 1
mul
// _ arg_lo (2^(32 - shift)) (arg_hi << (32 - shift))
split
// _ arg_lo (2^(32 - shift)) (arg_hi >> shift) carry
// _ arg_lo (2^(32 - shift)) (arg >> shift)_hi carry
place 3
place 3
// _ (arg >> shift)_hi carry arg_lo (2^(32 - shift))
mul
split
pop 1
// _ (arg >> shift)_hi carry (arg_lo >> shift)
add
// _ (arg >> shift)_hi (arg >> shift)_lo
return
// BEFORE: _ arg_hi arg_lo shift
// AFTER: _ 0 arg_hi (shift - 32)
{shift_amount_gt_32}:
addi -32
// _ arg_hi arg_lo (shift - 32)
pick 1
pop 1
// _ arg_hi (shift - 32)
push 0
place 2
// _ 0 arg_hi (shift - 32)
return
)
}
fn sign_offs(&self) -> HashMap<Reviewer, SignOffFingerprint> {
let mut sign_offs = HashMap::new();
sign_offs.insert(Reviewer("ferdinand"), 0xa1531b9db1f3f021.into());
sign_offs
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test_prelude::*;
impl ShiftRight {
pub fn assert_expected_shift_right_behavior(&self, shift_amount: u32, arg: u64) {
let initial_stack = self.set_up_test_stack((arg, shift_amount));
let mut expected_stack = initial_stack.clone();
self.rust_shadow(&mut expected_stack);
test_rust_equivalence_given_complete_state(
&ShadowedClosure::new(Self),
&initial_stack,
&[],
&NonDeterminism::default(),
&None,
Some(&expected_stack),
);
}
}
impl Closure for ShiftRight {
type Args = (u64, u32);
fn rust_shadow(&self, stack: &mut Vec<BFieldElement>) {
let (arg, shift_amount) = pop_encodable::<Self::Args>(stack);
assert!(shift_amount < 64);
push_encodable(stack, &(arg >> shift_amount));
}
fn pseudorandom_args(
&self,
seed: [u8; 32],
bench_case: Option<BenchmarkCase>,
) -> Self::Args {
let mut rng = StdRng::from_seed(seed);
match bench_case {
Some(BenchmarkCase::CommonCase) => (0x642, 15),
Some(BenchmarkCase::WorstCase) => (0x123, 33),
None => (rng.random(), rng.random_range(0..64)),
}
}
fn corner_case_args(&self) -> Vec<Self::Args> {
(0..64).map(|i| (1 << i, i)).collect()
}
}
#[test]
fn rust_shadow() {
ShadowedClosure::new(ShiftRight).test()
}
#[test]
fn unit_test() {
ShiftRight.assert_expected_shift_right_behavior(2, 8);
}
#[proptest]
fn property_test(arg: u64, #[strategy(0_u32..64)] shift_amount: u32) {
ShiftRight.assert_expected_shift_right_behavior(shift_amount, arg);
}
#[proptest]
fn negative_property_test(arg: u64, #[strategy(64_u32..)] shift_amount: u32) {
test_assertion_failure(
&ShadowedClosure::new(ShiftRight),
InitVmState::with_stack(ShiftRight.set_up_test_stack((arg, shift_amount))),
&[ShiftRight::SHIFT_AMOUNT_TOO_BIG_ERROR_ID],
);
}
}
#[cfg(test)]
mod benches {
use super::*;
use crate::test_prelude::*;
#[test]
fn benchmark() {
ShadowedClosure::new(ShiftRight).bench();
}
}