tasm_lib/mmr/
verify_mmr_successor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
use std::collections::HashMap;

use triton_vm::prelude::*;
use twenty_first::util_types::mmr::mmr_accumulator::MmrAccumulator;
use twenty_first::util_types::mmr::mmr_successor_proof::MmrSuccessorProof;

use crate::arithmetic::u64 as u64_lib;
use crate::hashing::merkle_step_mem_u64_index::MerkleStepMemU64Index;
use crate::hashing::merkle_step_u64_index::MerkleStepU64Index;
use crate::mmr::leaf_index_to_mt_index_and_peak_index::MmrLeafIndexToMtIndexAndPeakIndex;
use crate::prelude::*;
use crate::traits::basic_snippet::Reviewer;
use crate::traits::basic_snippet::SignOffFingerprint;

/// Verify that one MMR is a successor to another.
///
/// Verify the successorship relation between two MMRs. A [`MmrSuccessorProof`]
/// is necessary to demonstrate this relation, but it is not a *stack* argument
/// because this algorithm obtains the relevant info (authentication paths) from
/// nondeterminism. Accordingly, nondeterminism must be [initialized] correctly with
/// the `MmrSuccessorProof`.
///
/// The snippet crashes if the relation does not hold, or if the proof is invalid.
///
/// ### Behavior
///
/// ```text
/// BEFORE: _ *old_mmr *new_mmr
/// AFTER:  _
/// ```
///
/// ### Preconditions
///
/// None.
///
/// ### Postconditions
///
/// - the `new_mmr` is a successor of the `old_mmr`
///
/// [initialized]: VerifyMmrSuccessor::update_nondeterminism
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct VerifyMmrSuccessor;

impl VerifyMmrSuccessor {
    pub(crate) const OLD_HAS_MORE_LEAFS_THAN_NEW_ERROR_ID: i128 = 150;
    pub(crate) const INCONSISTENT_OLD_MMR_ERROR_ID: i128 = 151;
    pub(crate) const INCONSISTENT_NEW_MMR_ERROR_ID: i128 = 152;
    pub(crate) const DIFFERING_SHARED_PEAK_ERROR_ID: i128 = 153;
    pub(crate) const DIFFERING_UNSHARED_PEAK_ERROR_ID: i128 = 154;
}

impl BasicSnippet for VerifyMmrSuccessor {
    fn inputs(&self) -> Vec<(DataType, String)> {
        ["*old_mmr", "*new_mmr"]
            .map(|ptr_name| (DataType::VoidPointer, ptr_name.to_string()))
            .to_vec()
    }

    fn outputs(&self) -> Vec<(DataType, String)> {
        vec![]
    }

    fn entrypoint(&self) -> String {
        "tasm_lib_mmr_verify_mmr_successor".to_string()
    }

    fn code(&self, library: &mut Library) -> Vec<LabelledInstruction> {
        let sub_u64 = library.import(Box::new(u64_lib::sub::Sub));
        let lt_u64 = library.import(Box::new(u64_lib::lt::Lt));
        let popcount_u64 = library.import(Box::new(u64_lib::popcount::PopCount));
        let trailing_zeros_u64 = library.import(Box::new(u64_lib::trailing_zeros::TrailingZeros));
        let shl_u64 = library.import(Box::new(u64_lib::shift_left::ShiftLeft));
        let shr_u64 = library.import(Box::new(u64_lib::shift_right::ShiftRight));

        let leaf_index_to_mti_and_pki = library.import(Box::new(MmrLeafIndexToMtIndexAndPeakIndex));
        let merkle_step_u64 = library.import(Box::new(MerkleStepU64Index));
        let merkle_step_mem_u64 = library.import(Box::new(MerkleStepMemU64Index));

        let entrypoint = self.entrypoint();
        let clean_up_because_old_mmr_has_0_leafs =
            format!("{entrypoint}_clean_up_because_old_mmr_has_0_leafs");
        let assert_mmr_equality = format!("{entrypoint}_assert_mmr_equality");
        let assert_unchanged_peaks_equality =
            format!("{entrypoint}_assert_unchanged_peaks_equality");
        let clean_up_because_new_leafs_dont_affect_old_peaks =
            format!("{entrypoint}_clean_up_because_new_leafs_dont_affect_old_peaks");
        let traverse_new_tree = format!("{entrypoint}_traverse_new_tree");
        let traverse_new_tree_right_sibling = format!("{traverse_new_tree}_right_sibling");

        triton_asm! {
            // BEFORE: _ *old *new
            // AFTER:  _
            {entrypoint}:
                /* consistent old MMR? */
                pick 1
                {&MmrAccumulator::destructure()}
                    hint old_num_leafs: Pointer = stack[0]
                    hint old_peaks: Pointer = stack[1]
                // _ *new *old_peaks *old_num_leafs

                addi 1
                read_mem 2 hint old_num_leafs: u64 = stack[1..3]
                pop 1
                // _ *new *old_peaks [old_num_leafs: u64]

                pick 2
                read_mem 1 hint old_peaks_len = stack[1]
                addi 1
                place 1
                // _ *new [old_num_leafs: u64] *old_peaks old_peaks_len

                dup 3 dup 3
                call {popcount_u64}
                // _ *new [old_num_leafs: u64] *old_peaks old_peaks_len (popcount of old_num_leafs)

                eq assert error_id {Self::INCONSISTENT_OLD_MMR_ERROR_ID}
                // _ *new [old_num_leafs: u64] *old_peaks

                /* consistent new MMR? */
                pick 3
                {&MmrAccumulator::destructure()}
                    hint new_num_leafs: Pointer = stack[0]
                    hint new_peaks: Pointer = stack[1]
                // _ [old_num_leafs: u64] *old_peaks *new_peaks *new_num_leafs

                addi 1
                read_mem 2 hint new_num_leafs: u64 = stack[1..3]
                pop 1
                // _ [old_num_leafs: u64] *old_peaks *new_peaks [new_num_leafs: u64]

                pick 2
                read_mem 1 hint new_peaks_len = stack[1]
                addi 1
                place 1
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks new_peaks_len

                dup 3 dup 3
                call {popcount_u64}
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks new_peaks_len (popcount of new_num_leafs)

                eq assert error_id {Self::INCONSISTENT_NEW_MMR_ERROR_ID}
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks

                /* edge case: old MMR has 0 leafs – nothing to verify */
                push 0
                dup 6 dup 6
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks 0 [old_num_leafs: u64]

                push 0 push 0 hint zero: u64 = stack[0..2]
                {&DataType::U64.compare()}
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks 0 (old_num_leafs == 0)

                skiz call {clean_up_because_old_mmr_has_0_leafs}
                skiz return
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks

                /* edge case: old and new MMRs have the same number of leafs
                 * Check equality of peaks. Treated separately to simplify nominal case.
                 */
                push 0
                dup 6 dup 6
                dup 5 dup 5
                {&DataType::U64.compare()}
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks 0 (old_num_leafs == new_num_leafs)

                skiz call {assert_mmr_equality}
                skiz return
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks

                /* crash if num_old_leafs > num_new_leafs */
                dup 5 dup 5
                dup 4 dup 4
                call {lt_u64}
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks (new_num_leafs < old_num_leafs)

                push 0 eq
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks (new_num_leafs >= old_num_leafs)

                assert error_id {Self::OLD_HAS_MORE_LEAFS_THAN_NEW_ERROR_ID}
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks

                /* nominal case */
                dup 2 dup 2
                dup 7 dup 7
                //  _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks [new_num_leafs: u64] [old_num_leafs: u64]

                call {leaf_index_to_mti_and_pki}    hint num_unchanged_peaks = stack[0]
                                                    hint merkle_tree_idx: u64 = stack[1..3]
                // _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks [mt_index: u64] num_unchanged_peaks

                pick 2 pick 2
                place 8 place 8
                // _ [mt_index: u64] [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks num_unchanged_peaks

                pick 4
                read_mem 1
                addi 2
                // _ [mt_index: u64] [old_num_leafs: u64] [new_num_leafs: u64] *new_peaks num_unchanged_peaks old_num_peaks *old_peaks[0]

                pick 1
                addi -1
                push {Digest::LEN}
                mul
                // _ [mt_index: u64] [old_num_leafs: u64] [new_num_leafs: u64] *new_peaks num_unchanged_peaks *old_peaks[0] (old_num_peaks-1)*DIGEST_LENGTH

                dup 1
                add hint last_old_peak: Pointer = stack[0]
                place 1
                // _ [mt_index: u64] [old_num_leafs: u64] [new_num_leafs: u64] *new_peaks num_unchanged_peaks *old_peaks[-1] *old_peaks[0]

                pick 3
                addi 1
                pick 3
                // _ [mt_index: u64] [old_num_leafs: u64] [new_num_leafs: u64] *old_peaks[-1] *old_peaks[0] *new_peaks[0] num_unchanged_peaks

                call {assert_unchanged_peaks_equality}
                // _ [mt_index: u64] [old_num_leafs: u64] [new_num_leafs: u64] *old_peaks[-1] *old_peaks[i] *new_peaks[i] 0

                pick 2
                pop 2
                // _ [mt_index: u64] [old_num_leafs: u64] [new_num_leafs: u64] *old_peaks[-1] *new_peaks[i]

                place 5
                place 5
                // _ [mt_index: u64] *old_peaks[-1] *new_peaks[i] [old_num_leafs: u64] [new_num_leafs: u64]

                dup 3 dup 3
                call {trailing_zeros_u64} hint height_of_lowest_old_peak = stack[0]
                // _ [mt_index: u64] *old_peaks[-1] *new_peaks[i] [old_num_leafs: u64] [new_num_leafs: u64] height_of_lowest_old_peak

                push 0 push 1 hint one: u64 = stack[0..2]
                dup 2
                call {shl_u64} hint num_leafs_in_lowest_old_peak: u64 = stack[0..2]
                // _ [mt_index: u64] *old_peaks[-1] *new_peaks[i] [old_num_leafs: u64] [new_num_leafs: u64] height_of_lowest_old_peak [num_leafs_in_lowest_old_peak: u64]

                pick 6 pick 6
                pick 6 pick 6
                call {sub_u64}
                // _ [mt_index: u64] *old_peaks[-1] *new_peaks[i] height_of_lowest_old_peak [num_leafs_in_lowest_old_peak: u64] [num_new_leafs: u64]

                call {lt_u64}
                // _ [mt_index: u64] *old_peaks[-1] *new_peaks[i] height_of_lowest_old_peak (num_new_leafs < num_leafs_in_lowest_old_peak)

                push 0
                place 1
                skiz call {clean_up_because_new_leafs_dont_affect_old_peaks}
                skiz return
                // _ [mt_index: u64] *old_peaks[-1] *new_peaks[i] height_of_lowest_old_peak

                pick 4 pick 4
                pick 2
                // _ *old_peaks[-1] *new_peaks[i] [mt_index: u64] height_of_lowest_old_peak

                call {shr_u64} hint merkle_tree_idx: u64 = stack[0..2]
                // _ *old_peaks[-1] *new_peaks[i] [mt_index: u64]

                pick 2
                place 3
                divine 5
                // _ *new_peaks[i] *old_peaks[-1] [mt_index: u64] [current_node: Digest]

                call {traverse_new_tree}
                // _ *new_peaks[i] *old_peaks[j] [one: u64] [root: Digest]

                pick 8
                addi {Digest::LEN - 1}
                read_mem {Digest::LEN}
                pop 1
                // _ *old_peaks[j] [one: u64] [root: Digest] [new_peak[i]: Digest]

                assert_vector error_id {Self::DIFFERING_UNSHARED_PEAK_ERROR_ID}
                pop 5
                // _ *old_peaks[j] [one: u64]

                pop 3
                return

            // BEFORE: _ [old_num_leafs: u64] *old_peaks [new_num_leafs: u64] *new_peaks 0
            // AFTER:  _ 1
            {clean_up_because_old_mmr_has_0_leafs}:
                pop 5
                pop 2
                push 1
                return

            // BEFORE: _ [num_leafs: u64] *old_peaks [num_leafs: u64] *new_peaks 0
            // AFTER:  _ 1
            {assert_mmr_equality}:
                pick 4
                addi 1
                // _ [num_leafs: u64] [num_leafs: u64] *new_peaks 0 *old_peaks[0]

                pick 2
                addi 1
                // _ [num_leafs: u64] [num_leafs: u64] 0 *old_peaks[0] *new_peaks[0]

                pick 4 pick 4
                call {popcount_u64}
                // _ [num_leafs: u64] 0 *old_peaks[0] *new_peaks[0] num_peaks

                call {assert_unchanged_peaks_equality}
                // _ [num_leafs: u64] 0 *old_peaks[n] *new_peaks[n] 0

                pop 5
                pop 1
                push 1
                return

            // BEFORE:    _ *old_peaks[0] *new_peaks[0] n
            // INVARIANT: _ *old_peaks[i] *new_peaks[i] (n - i)
            // AFTER:     _ *old_peaks[n] *new_peaks[n] 0
            {assert_unchanged_peaks_equality}:
                dup 0
                push 0
                eq
                skiz return
                // _ *old_peaks[i] *new_peaks[i] (n - i)

                pick 2
                addi {Digest::LEN - 1}
                read_mem {Digest::LEN}
                addi {Digest::LEN + 1}
                place 7
                // _ *old_peaks[i + 1] *new_peaks[i] (n - i) [old_peak[i]: Digest]

                pick 6
                addi {Digest::LEN - 1}
                read_mem {Digest::LEN}
                addi {Digest::LEN + 1}
                place 11
                // _ *old_peaks[i + 1] *new_peaks[i + 1] (n - i) [old_peak[i]: Digest] [new_peak[i]: Digest]

                assert_vector error_id {Self::DIFFERING_SHARED_PEAK_ERROR_ID}
                pop 5
                // _ *old_peaks[i + 1] *new_peaks[i + 1] (n - i)

                addi -1
                recurse

            // BEFORE: _ [mt_index: u64] *old_peaks[-1] *new_peaks[i] height_of_lowest_old_peak 0
            // AFTER:  _ 1
            {clean_up_because_new_leafs_dont_affect_old_peaks}:
                pop 5
                pop 1
                push 1
                return

            // INVARIANT: _ *old_peaks[j] [mt_index >> i: u64] [current_node: Digest]
            {traverse_new_tree}:
                dup 6 dup 6
                push 0 push 1 hint merkle_tree_root_index: u64 = stack[0..2]
                {&DataType::U64.compare()}
                skiz return
                // _ *old_peaks[j] [mt_index >> i: u64] [current_node: Digest]

                push 1
                dup 6
                push 1
                and
                // _ *old_peaks[j] [mt_index >> i: u64] [current_node: Digest] 1 is_right_sibling

                skiz call {traverse_new_tree_right_sibling}
                skiz call {merkle_step_u64}
                // _ *old_peaks[j'] [mt_index >> (i + 1): u64] [next_node: Digest]

                recurse

            // BEFORE: _ *old_peaks[j]   [mt_index >> i: u64]       [current_node: Digest] 1
            // AFTER:  _ *old_peaks[j-1] [mt_index >> (i + 1): u64] [next_node: Digest]    0
            {traverse_new_tree_right_sibling}:
                pop 1
                call {merkle_step_mem_u64}
                // _ *old_peaks[j+1] [mt_index >> (i + 1): u64] [next_node: Digest]

                pick 7
                addi -10 // -(2 · Digest::LEN)
                place 7
                // _ *old_peaks[j-1] [mt_index >> (i + 1): u64] [next_node: Digest]

                push 0
                return
        }
    }

    fn sign_offs(&self) -> HashMap<Reviewer, SignOffFingerprint> {
        let mut sign_offs = HashMap::new();
        sign_offs.insert(Reviewer("ferdinand"), 0xeb1e81bd042d7a0c.into());
        sign_offs.insert(Reviewer("alan"), 0xeb1e81bd042d7a0c.into());
        sign_offs
    }
}

impl VerifyMmrSuccessor {
    /// Update a nondeterminism in accordance with verifying a given [`MmrSuccessorProof`]
    /// with this snippet.
    pub fn update_nondeterminism(
        nondeterminism: &mut NonDeterminism,
        mmr_successor_proof: &MmrSuccessorProof,
    ) {
        let mut auth_path = mmr_successor_proof.paths.iter();
        if let Some(&first) = auth_path.next() {
            nondeterminism
                .individual_tokens
                .extend(first.reversed().values());
            nondeterminism.digests.extend(auth_path);
        };
    }
}

#[cfg(test)]
mod tests {
    use std::collections::VecDeque;

    use twenty_first::util_types::mmr::mmr_accumulator::MmrAccumulator;
    use twenty_first::util_types::mmr::mmr_successor_proof::MmrSuccessorProof;

    use super::*;
    use crate::empty_stack;
    use crate::test_prelude::*;
    use crate::twenty_first::prelude::Mmr;

    impl ReadOnlyAlgorithm for VerifyMmrSuccessor {
        fn rust_shadow(
            &self,
            stack: &mut Vec<BFieldElement>,
            memory: &HashMap<BFieldElement, BFieldElement>,
            nd_tokens: VecDeque<BFieldElement>,
            nd_digests: VecDeque<Digest>,
        ) {
            let new_mmr_pointer = stack.pop().unwrap();
            let old_mmr_pointer = stack.pop().unwrap();

            let new_mmr = *MmrAccumulator::decode_from_memory(memory, new_mmr_pointer).unwrap();
            let old_mmr = *MmrAccumulator::decode_from_memory(memory, old_mmr_pointer).unwrap();

            // figure out the length of the authentication path
            let num_new_leafs = new_mmr.num_leafs() - old_mmr.num_leafs();
            let new_dummy_leafs = vec![Digest::default(); num_new_leafs.try_into().unwrap()];
            let dummy_proof = MmrSuccessorProof::new_from_batch_append(&old_mmr, &new_dummy_leafs);
            let auth_path_len = dummy_proof.paths.len();

            // grab first path element from nd tokens
            let mut path = vec![];
            if auth_path_len > 0 {
                let first_element = (0..Digest::LEN).rev().map(|i| nd_tokens[i]).collect_vec();
                path.push(Digest::new(first_element.try_into().unwrap()));
            }

            // grab remaining path elements from nd digests
            if auth_path_len > 1 {
                path.extend((0..auth_path_len - 1).map(|i| nd_digests[i]));
            }

            assert!(MmrSuccessorProof { paths: path }.verify(&old_mmr, &new_mmr));
        }

        fn pseudorandom_initial_state(
            &self,
            seed: [u8; 32],
            bench_case: Option<BenchmarkCase>,
        ) -> ReadOnlyAlgorithmInitialState {
            let mut rng = StdRng::from_seed(seed);
            let old_num_leafs = match bench_case {
                Some(BenchmarkCase::CommonCase) => u32::MAX.into(),
                Some(BenchmarkCase::WorstCase) => u64::MAX >> 2,
                None => rng.next_u64() >> 1,
            };
            let old_peaks = (0..old_num_leafs.count_ones())
                .map(|_| rng.random())
                .collect();
            let old = MmrAccumulator::init(old_peaks, old_num_leafs);

            let num_new_leafs = match bench_case {
                Some(BenchmarkCase::CommonCase) => 100,
                Some(BenchmarkCase::WorstCase) => 1000,
                None => 1 << rng.random_range(0..5),
            };
            let new_leafs = (0..num_new_leafs).map(|_| rng.random()).collect_vec();
            let proof = MmrSuccessorProof::new_from_batch_append(&old, &new_leafs);

            let mut new = old.clone();
            for leaf in new_leafs {
                new.append(leaf);
            }

            initial_state(&old, &new, &proof)
        }

        fn corner_case_initial_states(&self) -> Vec<ReadOnlyAlgorithmInitialState> {
            let mut rng = rand::rng();
            let mut initial_states = vec![];

            for (num_old_leafs, num_inserted_leafs) in [0_u64, 1, 2, 3, 4, 8]
                .into_iter()
                .cartesian_product([0, 1, 2, 3, 4, 8])
            {
                let old_peaks = (0..num_old_leafs.count_ones())
                    .map(|_| rng.random())
                    .collect();
                let old = MmrAccumulator::init(old_peaks, num_old_leafs);

                let mut new = old.clone();
                let new_leafs = (0..num_inserted_leafs).map(|_| rng.random()).collect_vec();
                for &leaf in &new_leafs {
                    new.append(leaf);
                }
                let proof = MmrSuccessorProof::new_from_batch_append(&old, &new_leafs);

                initial_states.push(initial_state(&old, &new, &proof));
            }

            initial_states
        }
    }

    fn initial_state(
        old: &MmrAccumulator,
        new: &MmrAccumulator,
        proof: &MmrSuccessorProof,
    ) -> ReadOnlyAlgorithmInitialState {
        let Digest(seed) = Tip5::hash_pair(Tip5::hash(old), Tip5::hash(new));
        let seed = seed
            .into_iter()
            .flat_map(|bfe| bfe.raw_bytes())
            .take(32)
            .collect_vec();
        let mut rng = StdRng::from_seed(seed.try_into().unwrap());

        let address_for_old = bfe!(rng.random_range(0_u32..1 << 30));
        let address_for_new =
            address_for_old + bfe!(old.encode().len()) + bfe!(rng.random_range(0_u32..1 << 28));

        let mut nondeterminism = NonDeterminism::default();
        VerifyMmrSuccessor::update_nondeterminism(&mut nondeterminism, proof);
        encode_to_memory(&mut nondeterminism.ram, address_for_old, old);
        encode_to_memory(&mut nondeterminism.ram, address_for_new, new);

        let mut stack = empty_stack();
        stack.push(address_for_old);
        stack.push(address_for_new);

        ReadOnlyAlgorithmInitialState {
            stack,
            nondeterminism,
        }
    }

    fn failing_initial_states() -> Vec<ReadOnlyAlgorithmInitialState> {
        let one_leaf = MmrAccumulator::new_from_leafs(vec![Digest::default()]);
        let empty = MmrAccumulator::new_from_leafs(vec![]);
        let bogus_proof = MmrSuccessorProof { paths: vec![] };
        let mut initial_states = vec![initial_state(&one_leaf, &empty, &bogus_proof)];

        let mut rng = StdRng::seed_from_u64(0x18c78fc35da66859);
        for (old_num_leafs, new_num_leafs) in
            [1_u64, 2, 3, 8].into_iter().cartesian_product([0, 1, 8])
        {
            let old_peaks = (0..old_num_leafs.count_ones())
                .map(|_| rng.random())
                .collect();
            let old = MmrAccumulator::init(old_peaks, old_num_leafs);

            let new_leafs = (0..new_num_leafs).map(|_| rng.random()).collect_vec();
            let mut new_mmr = old.clone();
            for &leaf in &new_leafs {
                new_mmr.append(leaf);
            }
            let new = new_mmr;
            let proof = MmrSuccessorProof::new_from_batch_append(&old, &new_leafs);

            let wrong_old = MmrAccumulator::init(old.peaks(), old.num_leafs().rotate_left(1));
            initial_states.push(initial_state(&wrong_old, &new, &proof));

            let wrong_new = MmrAccumulator::init(new.peaks(), new.num_leafs().rotate_left(1));
            initial_states.push(initial_state(&old, &wrong_new, &proof));

            let mut wrong_new_peaks = new.peaks();
            wrong_new_peaks.push(rng.random());
            let too_many_peaks_new = MmrAccumulator::init(wrong_new_peaks, new.num_leafs());
            initial_states.push(initial_state(&old, &too_many_peaks_new, &proof));

            for peak_idx in 0..old.peaks().len() {
                let mut wrong_old_peaks = old.peaks();
                let Digest(ref mut digest_to_disturb) = &mut wrong_old_peaks[peak_idx];
                let digest_to_disturb_innards_idx = rng.random_range(0..Digest::LEN);
                digest_to_disturb[digest_to_disturb_innards_idx].increment();

                let wrong_old = MmrAccumulator::init(wrong_old_peaks, old.num_leafs());
                initial_states.push(initial_state(&wrong_old, &new, &proof));
            }

            for proof_path_idx in 0..proof.paths.len() {
                let mut wrong_proof = proof.clone();
                let proof_paths = &mut wrong_proof.paths;
                let Digest(ref mut digest_to_disturb) = &mut proof_paths[proof_path_idx];
                let digest_to_disturb_innards_idx = rng.random_range(0..Digest::LEN);
                digest_to_disturb[digest_to_disturb_innards_idx].increment();

                initial_states.push(initial_state(&old, &new, &wrong_proof));
            }
        }

        // the secret input being underpopulated is no acceptable failure reason
        for state in &mut initial_states {
            let non_determinism = &mut state.nondeterminism;
            non_determinism.individual_tokens.extend(bfe_array![0; 5]);
            non_determinism.digests.extend([Digest::default(); 1000]);
        }

        initial_states
    }

    #[test]
    fn unit() {
        ShadowedReadOnlyAlgorithm::new(VerifyMmrSuccessor).test();
    }

    #[test]
    fn verify_mmr_successor_negative_test() {
        let all_error_ids = [
            VerifyMmrSuccessor::OLD_HAS_MORE_LEAFS_THAN_NEW_ERROR_ID,
            VerifyMmrSuccessor::INCONSISTENT_OLD_MMR_ERROR_ID,
            VerifyMmrSuccessor::INCONSISTENT_NEW_MMR_ERROR_ID,
            VerifyMmrSuccessor::DIFFERING_SHARED_PEAK_ERROR_ID,
            VerifyMmrSuccessor::DIFFERING_UNSHARED_PEAK_ERROR_ID,
        ];

        for (i, init_state) in failing_initial_states().into_iter().enumerate() {
            dbg!(i);
            test_assertion_failure(
                &ShadowedReadOnlyAlgorithm::new(VerifyMmrSuccessor),
                init_state.into(),
                &all_error_ids,
            );
        }
    }
}

#[cfg(test)]
mod bench {
    use super::*;
    use crate::test_prelude::*;

    #[test]
    fn benchmark() {
        ShadowedReadOnlyAlgorithm::new(VerifyMmrSuccessor).bench();
    }
}