tasm_lib/hashing/
merkle_step_mem_u64_index.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
use std::collections::HashMap;

use triton_vm::prelude::*;

use crate::hashing::merkle_step_u64_index::MerkleStepU64Index;
use crate::prelude::*;
use crate::traits::basic_snippet::Reviewer;
use crate::traits::basic_snippet::SignOffFingerprint;

/// Similar to instruction `merkle_step_mem`, but for index of type `u64`
/// instead of the native `u32`. The most notable difference is that the stack
/// element with index 6 (“`st6`”) will generally be modified.
///
/// ### Behavior
///
/// ```text
/// BEFORE: _ ram_ptr  [merkle_tree_node_index: u64] [node: Digest]
/// AFTER:  _ ram_ptr' [merkle_tree_parent_node_index: u64] [parent_node: Digest]
/// ```
///
/// ### Preconditions
///
/// - all input arguments are properly [`BFieldCodec`] encoded
///
/// ### Postconditions
///
/// - all output is properly [`BFieldCodec`] encoded
/// - the `ram_ptr` is incremented by [`Digest::LEN`]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub struct MerkleStepMemU64Index;

impl BasicSnippet for MerkleStepMemU64Index {
    fn inputs(&self) -> Vec<(DataType, String)> {
        vec![
            (DataType::VoidPointer, "ram pointer".to_owned()),
            (DataType::U64, "merkle tree node index".to_owned()),
            (DataType::Digest, "node".to_owned()),
        ]
    }

    fn outputs(&self) -> Vec<(DataType, String)> {
        vec![
            (DataType::VoidPointer, "ram pointer".to_owned()),
            (DataType::U64, "merkle tree parent node index".to_owned()),
            (DataType::Digest, "parent node".to_owned()),
        ]
    }

    fn entrypoint(&self) -> String {
        "tasmlib_hashing_merkle_step_mem_u64_index".to_owned()
    }

    fn code(&self, _: &mut Library) -> Vec<LabelledInstruction> {
        triton_asm!(
            {self.entrypoint()}:
                merkle_step_mem
                // _ ptr' mt_idx_hi (mt_idx_lo / 2) [parent_node: Digest]

                {&MerkleStepU64Index::make_u64_index_consistent()}
                // _ ptr' (mt_index / 2)_hi (mt_index / 2)_lo [parent_node: Digest]

                return
        )
    }

    fn sign_offs(&self) -> HashMap<Reviewer, SignOffFingerprint> {
        let mut sign_offs = HashMap::new();
        sign_offs.insert(Reviewer("ferdinand"), 0xd1c95ceda7a3fa88.into());
        sign_offs
    }
}

#[cfg(test)]
mod tests {
    use std::collections::VecDeque;

    use super::*;
    use crate::test_prelude::*;

    impl MerkleStepMemU64Index {
        fn set_up_initial_state(
            &self,
            ram_ptr: BFieldElement,
            leaf_index: u64,
        ) -> ReadOnlyAlgorithmInitialState {
            let mut stack = self.init_stack_for_isolated_run();
            push_encodable(&mut stack, &ram_ptr);
            push_encodable(&mut stack, &leaf_index);
            push_encodable(&mut stack, &rand::random::<Digest>());

            let mut nondeterminism = NonDeterminism::default();
            encode_to_memory(&mut nondeterminism.ram, ram_ptr, &rand::random::<Digest>());

            ReadOnlyAlgorithmInitialState {
                stack,
                nondeterminism,
            }
        }
    }

    impl ReadOnlyAlgorithm for MerkleStepMemU64Index {
        fn rust_shadow(
            &self,
            stack: &mut Vec<BFieldElement>,
            memory: &HashMap<BFieldElement, BFieldElement>,
            _: VecDeque<BFieldElement>,
            _: VecDeque<Digest>,
        ) {
            let stack_digest = pop_encodable::<Digest>(stack);
            let leaf_index = pop_encodable::<u64>(stack);
            let ram_ptr = pop_encodable::<BFieldElement>(stack);

            let stack_digest_is_left_sibling = leaf_index % 2 == 0;
            let sibling_digest = *Digest::decode_from_memory(memory, ram_ptr).unwrap();
            let (left_digest, right_digest) = if stack_digest_is_left_sibling {
                (stack_digest, sibling_digest)
            } else {
                (sibling_digest, stack_digest)
            };

            let parent_digest = Tip5::hash_pair(left_digest, right_digest);
            let parent_index = leaf_index / 2;

            push_encodable(stack, &(ram_ptr + bfe!(Digest::LEN)));
            push_encodable(stack, &parent_index);
            push_encodable(stack, &parent_digest);
        }

        fn pseudorandom_initial_state(
            &self,
            seed: [u8; 32],
            bench_case: Option<BenchmarkCase>,
        ) -> ReadOnlyAlgorithmInitialState {
            let mut rng = StdRng::from_seed(seed);
            let leaf_index = match bench_case {
                Some(BenchmarkCase::CommonCase) => 1 << 33,
                Some(BenchmarkCase::WorstCase) => 1 << 63,
                None => rng.random(),
            };

            self.set_up_initial_state(rng.random(), leaf_index)
        }
    }

    #[test]
    fn unit() {
        ShadowedReadOnlyAlgorithm::new(MerkleStepMemU64Index).test();
    }
}

#[cfg(test)]
mod benches {
    use super::*;
    use crate::test_prelude::*;

    #[test]
    fn benchmark() {
        ShadowedReadOnlyAlgorithm::new(MerkleStepMemU64Index).bench();
    }
}