tasm_lib/list/higher_order/map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
use itertools::Itertools;
use strum::EnumCount;
use tasm_lib::list::higher_order::inner_function::InnerFunction;
use tasm_lib::structure::tasm_object::DEFAULT_MAX_DYN_FIELD_SIZE;
use triton_vm::isa::op_stack::OpStackElement;
use triton_vm::prelude::*;
use crate::list::new::New;
use crate::list::push::Push;
use crate::prelude::*;
const INNER_FN_INCORRECT_NUM_INPUTS: &str = "Inner function in `map` only works with *one* input. \
Use a tuple as a workaround.";
const INNER_FN_INCORRECT_INPUT_DYN_LEN: &str = "An input type of dynamic length to `map`s inner \
function must be a tuple of form `(bfe, _)`.";
/// Applies a given function to every element of a list, and collects the new
/// elements into a new list.
///
/// Mapping over multiple input lists into one output list, effectively chaining
/// inputs before applying the map, is possible with [`ChainMap`]. See there for
/// extended documentation.
pub type Map = ChainMap<1>;
/// Applies a given function `f` to every element of all given lists, collecting
/// the new elements into a new list.
///
/// The given function `f` must produce elements of a type for which the encoded
/// length is [statically known][len]. The input type may have either
/// statically or dynamically known length:
/// - In the static case, the entire element is placed on the stack before
/// passing control to `f`.
/// - In the dynamic case, a memory pointer to the encoded element and the
/// item's length is placed on the stack before passing control to `f`. The
/// input list **must** be encoded according to [`BFieldCodec`]. Otherwise,
/// behavior of `ChainMap` is undefined!
///
/// The stack layout is independent of the list currently being processed. This
/// allows the [`InnerFunction`] `f` to use runtime parameters from the stack.
/// Note that the chain map requires a certain number of stack registers for
/// internal purposes. This number can be accessed through
/// [`ChainMap::NUM_INTERNAL_REGISTERS`]. As mentioned above, the stack layout
/// upon starting execution of `f` depends on the input type's
/// [static length][len]. In the static case, the stack layout is:
///
/// ```txt
/// // _ <accessible> [_; ChainMap::<N>::NUM_INTERNAL_REGISTERS] [input_element; len]
/// ```
///
/// In the case of input elements with a dynamic length, the stack layout is:
///
/// ```txt
/// // _ <accessible> [_; ChainMap::<N>::NUM_INTERNAL_REGISTERS] *elem_i elem_i_len
/// ```
///
/// [len]: BFieldCodec::static_length
pub struct ChainMap<const NUM_INPUT_LISTS: usize> {
f: InnerFunction,
}
impl<const NUM_INPUT_LISTS: usize> ChainMap<NUM_INPUT_LISTS> {
/// The number of registers required internally. See [`ChainMap`] for additional
/// details.
pub const NUM_INTERNAL_REGISTERS: usize = {
assert!(NUM_INPUT_LISTS <= Self::MAX_NUM_INPUT_LISTS);
3 + NUM_INPUT_LISTS
};
/// Need access to all lists, plus a little wiggle room.
const MAX_NUM_INPUT_LISTS: usize = OpStackElement::COUNT - 1;
/// # Panics
///
/// - if the input type has [static length] _and_ takes up
/// [`OpStackElement::COUNT`] or more words
/// - if the input type has dynamic length and is _anything but_ a tuple
/// `(_, `[`BFieldElement`][bfe]`)`
/// - if the output type takes up [`OpStackElement::COUNT`]` - 1` or more words
/// - if the output type does not have a [static length][len]
///
/// [len]: BFieldCodec::static_length
/// [bfe]: DataType::Bfe
pub fn new(f: InnerFunction) -> Self {
if let Some(input_len) = f.domain().static_length() {
// need instruction `place {input_type.stack_size()}`
assert!(input_len < OpStackElement::COUNT);
} else {
let DataType::Tuple(tuple) = f.domain() else {
panic!("{INNER_FN_INCORRECT_INPUT_DYN_LEN}");
};
let [_, DataType::Bfe] = tuple[..] else {
panic!("{INNER_FN_INCORRECT_INPUT_DYN_LEN}");
};
}
// need instruction `pick {output_type.stack_size() + 1}`
let output_len = f
.range()
.static_length()
.expect("output type's encoding length must be static");
assert!(output_len + 1 < OpStackElement::COUNT);
Self { f }
}
}
impl<const NUM_INPUT_LISTS: usize> BasicSnippet for ChainMap<NUM_INPUT_LISTS> {
fn inputs(&self) -> Vec<(DataType, String)> {
let list_type = DataType::List(Box::new(self.f.domain()));
(0..NUM_INPUT_LISTS)
.map(|i| (list_type.clone(), format!("*input_list_{i}")))
.collect_vec()
}
fn outputs(&self) -> Vec<(DataType, String)> {
let list_type = DataType::List(Box::new(self.f.range()));
vec![(list_type, "*output_list".to_string())]
}
fn entrypoint(&self) -> String {
let maybe_chain_surely_map = if NUM_INPUT_LISTS == 1 {
"map".to_string()
} else {
format!("chain_map_{NUM_INPUT_LISTS}")
};
let f_label = self.f.entrypoint();
format!("tasmlib_list_higher_order_u32_{maybe_chain_surely_map}_{f_label}")
}
fn code(&self, library: &mut Library) -> Vec<LabelledInstruction> {
if self.f.domain().static_length().is_some() {
self.code_for_static_len_input_type(library)
} else {
self.code_for_dyn_len_input_type(library)
}
}
}
struct DecomposedInnerFunction<'body> {
exec_or_call: Vec<LabelledInstruction>,
fn_body: Option<&'body [LabelledInstruction]>,
}
impl<const NUM_INPUT_LISTS: usize> ChainMap<NUM_INPUT_LISTS> {
fn code_for_static_len_input_type(&self, library: &mut Library) -> Vec<LabelledInstruction> {
let input_type = self.f.domain();
let output_type = self.f.range();
assert!(input_type.static_length().is_some());
let new_list = library.import(Box::new(New));
let inner_fn = self.decompose_inner_fn(library);
let entrypoint = self.entrypoint();
let main_loop_fn = format!("{entrypoint}_loop");
let mul_elem_size = |n| match n {
1 => triton_asm!(),
n => triton_asm!(push {n} mul),
};
let adjust_output_list_pointer = match output_type.stack_size() {
0 | 1 => triton_asm!(),
n => triton_asm!(addi {-(n as i32 - 1)}),
};
let main_loop_body = triton_asm! {
// INVARIANT: _ *end_condition_in_list *output_elem *input_elem
/* maybe return */
// not using `recurse_or_return` to have more room for parameters
// that might live on the stack, to and used by the inner function
dup 2 dup 1 eq
skiz return
/* read */
{&input_type.read_value_from_memory_leave_pointer()}
place {input_type.stack_size()}
// _ *end_condition_in_list *output_elem *prev_input_elem [input_elem]
/* map */
{&inner_fn.exec_or_call}
// _ *end_condition_in_list *output_elem *prev_input_elem [output_elem]
/* write */
pick {output_type.stack_size() + 1}
{&output_type.write_value_to_memory_leave_pointer()}
addi {-2 * output_type.stack_size() as i32}
place 1 // _ *end_condition_in_list *prev_output_elem *prev_input_elem
recurse
};
let map_one_list = triton_asm! {
// BEFORE: _ [fill; M] [*in_list; N-M] *out_list
// AFTER: _ [fill; M+1] [*in_list; N-M-1] *out_list
/* read list lengths */
read_mem 1
addi 1 // _ [_; M] [_; N-M-1] *in_list out_list_len *out_list
pick 2
read_mem 1
addi 1 // _ [_; M] [_; N-M-1] out_list_len *out_list in_list_len *in_list
/* prepare in_list pointer for main loop */
dup 1
{&mul_elem_size(input_type.stack_size())}
dup 1
add // _ [_; M] [_; N-M-1] out_list_len *out_list in_list_len *in_list *in_list_first_elem_last_word
/* update out_list's len */
pick 2
pick 4 // _ [_; M] [_; N-M-1] *out_list *in_list *in_list_first_elem_last_word in_list_len out_list_len
add // _ [_; M] [_; N-M-1] *out_list *in_list *in_list_first_elem_last_word new_out_list_len
dup 0
pick 4
write_mem 1
addi -1 // _ [_; M] [_; N-M-1] *in_list *in_list_first_elem_last_word new_out_list_len *out_list
/* store *out_list for next iterations */
dup 0
place 4 // _ [_; M] [_; N-M-1] *out_list *in_list *in_list_first_elem_last_word new_out_list_len *out_list
/* prepare out_list pointer for main loop */
pick 1
{&mul_elem_size(output_type.stack_size())}
add // _ [_; M] [_; N-M-1] *out_list *in_list *in_list_first_elem_last_word *out_list_last_elem_last_word
{&adjust_output_list_pointer}
place 1 // _ [_; M] [_; N-M-1] *out_list *in_list *out_list_last_elem_first_word *in_list_first_elem_last_word
call {main_loop_fn}
hint used_list: Pointer = stack[2]
// _ [_; M] [_; N-M-1] *out_list fill garbage fill
/* clean up */
pop 2
place {NUM_INPUT_LISTS}
// _ [_; M+1] [_; N-M-1] *out_list
};
let map_all_lists = vec![map_one_list; NUM_INPUT_LISTS].concat();
triton_asm! {
// BEFORE: _ [*in_list; N]
// AFTER: _ *out_list
{entrypoint}:
call {new_list}
hint chain_map_output_list: Pointer = stack[0]
{&map_all_lists}
place {NUM_INPUT_LISTS}
{&Self::pop_input_lists()}
return
{main_loop_fn}:
{&main_loop_body}
{&inner_fn.fn_body.unwrap_or_default()}
}
}
fn code_for_dyn_len_input_type(&self, library: &mut Library) -> Vec<LabelledInstruction> {
let input_type = self.f.domain();
let output_type = self.f.range();
assert!(input_type.static_length().is_none());
let new_list = library.import(Box::new(New));
let push = library.import(Box::new(Push::new(output_type.clone())));
let inner_fn = self.decompose_inner_fn(library);
let entrypoint = self.entrypoint();
let main_loop_fn = format!("{entrypoint}_loop");
let main_loop_body = triton_asm! {
// ⬐ for Self::NUM_INTERNAL_REGISTERS
// BEFORE: _ fill 0 in_list_len *out_list *in_list[0]_si
// INVARIANT: _ fill i in_list_len *out_list *in_list[i]_si
// AFTER: _ fill in_list_len in_list_len *out_list garbage
/* maybe return */
dup 3
dup 3
eq
skiz return
/* read field size */
read_mem 1 hint item_len = stack[0]
addi 2 // _ fill i in_list_len *out_list elem_len *in_list[i]
/* check field size is reasonable */
push {DEFAULT_MAX_DYN_FIELD_SIZE}
hint default_max_dyn_field_size = stack[0]
dup 2 // _ fill i in_list_len *out_list l[i]_len *in_list[i] max l[i]_len
lt
assert // _ fill i in_list_len *out_list l[i]_len *in_list[i]
/* advance item iterator */
dup 1
dup 1
add
place 2
/* prepare for inner function */
place 1 // _ fill i in_list_len *out_list *in_list[i+1]_si *in_list[i] l[i]_len
/* map */
{&inner_fn.exec_or_call}
// _ fill i in_list_len *out_list *in_list[i]_si [out_elem]
/* write */
dup {output_type.stack_size() + 1}
place {output_type.stack_size()}
call {push}
// _ fill i in_list_len *out_list *in_list[i]_si
/* advance i */
pick 3
addi 1
place 3
// _ fill (i+i) in_list_len *out_list *in_list[i+1]_si
recurse
};
let map_one_list = triton_asm! {
// BEFORE: _ [fill; M] [*in_list; N-M] *out_list
// AFTER: _ [fill; M+1] [*in_list; N-M-1] *out_list
/* read in_list length */
pick 1
read_mem 1 hint in_list_len = stack[1]
addi 2 // _ [_; M] [_; N-M-1] *out_list in_list_len *in_list[0]_si
/* setup for main loop */
pick 2
place 1
push 0 hint filler = stack[0]
place 3
push 0 hint index = stack[0]
place 3
// _ [_; M] [_; N-M-1] fill 0 in_list_len *out_list *in_list[0]_si
call {main_loop_fn}
/* clean up */
pick 1
place 4
pop 3
place {NUM_INPUT_LISTS}
// _ [_; M+1] [_; N-M-1] *out_list
};
let map_all_lists = vec![map_one_list; NUM_INPUT_LISTS].concat();
triton_asm! {
// BEFORE: _ [*in_list; N]
// AFTER: _ *out_list
{entrypoint}:
call {new_list}
hint chain_map_output_list: Pointer = stack[0]
{&map_all_lists}
place {NUM_INPUT_LISTS}
{&Self::pop_input_lists()}
return
{main_loop_fn}:
{&main_loop_body}
{&inner_fn.fn_body.unwrap_or_default()}
}
}
fn decompose_inner_fn(&self, library: &mut Library) -> DecomposedInnerFunction {
let exec_or_call = match &self.f {
InnerFunction::RawCode(code) => {
// Inlining saves two clock cycles per iteration. If the function cannot be
// inlined, it needs to be appended to the function body.
code.inlined_body()
.unwrap_or(triton_asm!(call {code.entrypoint()}))
}
InnerFunction::BasicSnippet(snippet) => {
assert_eq!(1, snippet.inputs().len(), "{INNER_FN_INCORRECT_NUM_INPUTS}");
let labelled_instructions = snippet.annotated_code(library);
let label = library.explicit_import(&snippet.entrypoint(), &labelled_instructions);
triton_asm!(call { label })
}
InnerFunction::NoFunctionBody(lnat) => {
triton_asm!(call { lnat.label_name })
}
};
let fn_body = if let InnerFunction::RawCode(c) = &self.f {
c.inlined_body().is_none().then_some(c.function.as_slice())
} else {
None
};
DecomposedInnerFunction {
exec_or_call,
fn_body,
}
}
fn pop_input_lists() -> Vec<LabelledInstruction> {
match NUM_INPUT_LISTS {
0 => triton_asm!(),
i @ 1..=5 => triton_asm!(pop { i }),
i @ 6..=10 => triton_asm!(pop 5 pop { i - 5 }),
i @ 11..=15 => triton_asm!(pop 5 pop 5 pop { i - 10 }),
_ => unreachable!("see compile time checks for `NUM_INPUT_LISTS`"),
}
}
}
#[cfg(test)]
mod tests {
use itertools::Itertools;
use super::*;
use crate::arithmetic;
use crate::list::higher_order::inner_function::InnerFunction;
use crate::list::higher_order::inner_function::RawCode;
use crate::neptune::mutator_set::get_swbf_indices::u32_to_u128_add_another_u128;
use crate::rust_shadowing_helper_functions::dyn_malloc::dynamic_allocator;
use crate::rust_shadowing_helper_functions::list::list_get;
use crate::rust_shadowing_helper_functions::list::list_get_length;
use crate::rust_shadowing_helper_functions::list::list_pointer_to_elem_pointer;
use crate::rust_shadowing_helper_functions::list::list_set;
use crate::rust_shadowing_helper_functions::list::list_set_length;
use crate::test_helpers::test_rust_equivalence_given_execution_state;
use crate::test_prelude::*;
impl<const NUM_INPUT_LISTS: usize> ChainMap<NUM_INPUT_LISTS> {
fn init_state(
&self,
environment_args: impl IntoIterator<Item = BFieldElement>,
list_lengths: [u16; NUM_INPUT_LISTS],
seed: <StdRng as SeedableRng>::Seed,
) -> FunctionInitialState {
let input_type = self.f.domain();
let mut stack = self.init_stack_for_isolated_run();
let mut memory = HashMap::default();
let mut rng = StdRng::from_seed(seed);
stack.extend(environment_args);
for list_length in list_lengths {
let list_length = usize::from(list_length);
let list = input_type.random_list(&mut rng, list_length);
let list_pointer = dynamic_allocator(&mut memory);
let indexed_list = list
.into_iter()
.enumerate()
.map(|(i, v)| (list_pointer + bfe!(i), v));
memory.extend(indexed_list);
stack.push(list_pointer);
}
FunctionInitialState { stack, memory }
}
}
impl<const NUM_INPUT_LISTS: usize> Function for ChainMap<NUM_INPUT_LISTS> {
fn rust_shadow(
&self,
stack: &mut Vec<BFieldElement>,
memory: &mut HashMap<BFieldElement, BFieldElement>,
) {
let input_type = self.f.domain();
let output_type = self.f.range();
New.rust_shadow(stack, memory);
let output_list_pointer = stack.pop().unwrap();
let input_list_pointers = (0..NUM_INPUT_LISTS)
.map(|_| stack.pop().unwrap())
.collect_vec();
// the inner function _must not_ rely on these elements
let buffer = (0..Self::NUM_INTERNAL_REGISTERS).map(|_| rand::random::<BFieldElement>());
stack.extend(buffer);
let mut total_output_len = 0;
for input_list_pointer in input_list_pointers {
let input_list_len = list_get_length(input_list_pointer, memory);
let output_list_len = list_get_length(output_list_pointer, memory);
let new_output_list_len = output_list_len + input_list_len;
list_set_length(output_list_pointer, new_output_list_len, memory);
for i in (0..input_list_len).rev() {
if input_type.static_length().is_some() {
let elem = list_get(input_list_pointer, i, memory, input_type.stack_size());
stack.extend(elem.into_iter().rev());
} else {
let (len, ptr) = list_pointer_to_elem_pointer(
input_list_pointer,
i,
memory,
&input_type,
);
stack.push(ptr);
stack.push(bfe!(len));
};
self.f.apply(stack, memory);
let elem = (0..output_type.stack_size())
.map(|_| stack.pop().unwrap())
.collect();
list_set(output_list_pointer, total_output_len + i, elem, memory);
}
total_output_len += input_list_len;
}
for _ in 0..Self::NUM_INTERNAL_REGISTERS {
stack.pop();
}
stack.push(output_list_pointer);
}
fn pseudorandom_initial_state(
&self,
seed: [u8; 32],
bench: Option<BenchmarkCase>,
) -> FunctionInitialState {
let mut rng = StdRng::from_seed(seed);
let environment_args = rng.random::<[BFieldElement; OpStackElement::COUNT]>();
let list_lengths = match bench {
None => rng.random::<[u8; NUM_INPUT_LISTS]>(),
Some(BenchmarkCase::CommonCase) => [10; NUM_INPUT_LISTS],
Some(BenchmarkCase::WorstCase) => [100; NUM_INPUT_LISTS],
};
let list_lengths = list_lengths.map(Into::into);
self.init_state(environment_args, list_lengths, rng.random())
}
}
#[derive(Debug, Clone)]
pub(crate) struct TestHashXFieldElement;
impl BasicSnippet for TestHashXFieldElement {
fn inputs(&self) -> Vec<(DataType, String)> {
vec![(DataType::Xfe, "element".to_string())]
}
fn outputs(&self) -> Vec<(DataType, String)> {
vec![(DataType::Digest, "digest".to_string())]
}
fn entrypoint(&self) -> String {
"test_hash_xfield_element".to_string()
}
fn code(&self, library: &mut Library) -> Vec<LabelledInstruction> {
let entrypoint = self.entrypoint();
let unused_import = library.import(Box::new(arithmetic::u32::safe_add::SafeAdd));
triton_asm!(
// BEFORE: _ x2 x1 x0
// AFTER: _ d4 d3 d2 d1 d0
{entrypoint}:
push 0 push 0
push 0 push 0
push 0 push 0 // _ x2 x1 x0 0 0 0 0 0 0
push 1 // _ x2 x1 x0 0 0 0 0 0 0 1
pick 9 // _ x1 x0 0 0 0 0 0 0 1 x2
pick 9 // _ x0 0 0 0 0 0 0 1 x2 x1
pick 9 // _ 0 0 0 0 0 0 1 x2 x1 x0
// Useless additions, to ensure that imports are accepted inside the
// map-generated code
push 0
push 0
call {unused_import}
pop 1
sponge_init
sponge_absorb
sponge_squeeze // _ d9 d8 d7 d6 d5 d4 d3 d2 d1 d0
pick 9 pick 9 // _ d7 d6 d5 d4 d3 d2 d1 d0 d9 d8
pick 9 pick 9 // _ d5 d4 d3 d2 d1 d0 d9 d8 d7 d6
pick 9 pop 5 // _ d4 d3 d2 d1 d0
return
)
}
}
/// `InnerFunction` does not implement `Clone`, and it is hard (impossible?) to
/// teach it. Hence, take a function `f` to generate the `InnerFunction`.
///
/// Theoretically, this _could_ mean that `f` produces a different
/// `InnerFunction` each time it is called, as every `Fn()` is `FnMut()`.
/// Since this is a test helper, how about it doesn't. 😊
fn test_chain_map_with_different_num_input_lists(f: impl Fn() -> InnerFunction) {
ShadowedFunction::new(ChainMap::<0>::new(f())).test();
ShadowedFunction::new(ChainMap::<1>::new(f())).test();
ShadowedFunction::new(ChainMap::<2>::new(f())).test();
ShadowedFunction::new(ChainMap::<3>::new(f())).test();
ShadowedFunction::new(ChainMap::<4>::new(f())).test();
ShadowedFunction::new(ChainMap::<5>::new(f())).test();
ShadowedFunction::new(ChainMap::<7>::new(f())).test();
ShadowedFunction::new(ChainMap::<11>::new(f())).test();
ShadowedFunction::new(ChainMap::<15>::new(f())).test();
}
#[test]
fn test_with_raw_function_identity_on_bfe() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(identity_bfe: return),
DataType::Bfe,
DataType::Bfe,
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_with_raw_function_bfe_lift() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(bfe_lift: push 0 push 0 pick 2 return),
DataType::Bfe,
DataType::Xfe,
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_with_raw_function_xfe_get_coeff_0() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(get_0: place 2 pop 2 return),
DataType::Xfe,
DataType::Bfe,
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_with_raw_function_square_on_bfe() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(square_bfe: dup 0 mul return),
DataType::Bfe,
DataType::Bfe,
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_with_raw_function_square_plus_n_on_bfe() {
// Inner function calculates `|x| -> x*x + n`, where `x` is the list element,
// and `n` is the same value for all elements.
fn test_case<const N: usize>() {
let raw_code = InnerFunction::RawCode(RawCode::new(
triton_asm!(square_plus_n_bfe: dup 0 mul dup {5 + N} add return),
DataType::Bfe,
DataType::Bfe,
));
ShadowedFunction::new(ChainMap::<N>::new(raw_code)).test();
}
test_case::<0>();
test_case::<1>();
test_case::<2>();
test_case::<3>();
test_case::<4>();
test_case::<5>();
test_case::<7>();
test_case::<9>();
test_case::<10>();
}
#[test]
fn test_with_raw_function_square_on_xfe() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(square_xfe: dup 2 dup 2 dup 2 xx_mul return),
DataType::Xfe,
DataType::Xfe,
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_with_raw_function_xfe_to_digest() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(xfe_to_digest: push 0 push 0 return),
DataType::Xfe,
DataType::Digest,
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_with_raw_function_digest_to_xfe() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(xfe_to_digest: pop 2 return),
DataType::Digest,
DataType::Xfe,
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_with_raw_function_square_on_xfe_plus_another_xfe() {
fn test_case<const N: usize>() {
let offset = ChainMap::<{ N }>::NUM_INTERNAL_REGISTERS;
let raw_code = InnerFunction::RawCode(RawCode::new(
triton_asm!(
square_xfe_plus_another_xfe:
dup 2 dup 2 dup 2 xx_mul
dup {5 + offset}
dup {5 + offset}
dup {5 + offset}
xx_add
return
),
DataType::Xfe,
DataType::Xfe,
));
ShadowedFunction::new(ChainMap::<N>::new(raw_code)).test();
}
test_case::<0>();
test_case::<1>();
test_case::<2>();
test_case::<3>();
test_case::<5>();
test_case::<4>();
test_case::<6>();
test_case::<7>();
}
#[test]
fn test_u32_list_to_unit_list() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(remove_elements: pop 1 return),
DataType::U32,
DataType::Tuple(vec![]),
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_u32_list_to_u64_list() {
let f = || {
InnerFunction::RawCode(RawCode::new(
triton_asm!(duplicate_u32: dup 0 return),
DataType::U32,
DataType::U64,
))
};
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn test_u32_list_to_u128_list_plus_x() {
// this code only works with 1 input list
let raw_code = InnerFunction::RawCode(u32_to_u128_add_another_u128());
let snippet = Map::new(raw_code);
let encoded_u128 = rand::random::<u128>().encode();
let input_list_len = rand::rng().random_range(0u16..200);
let initial_state = snippet.init_state(encoded_u128, [input_list_len], rand::random());
test_rust_equivalence_given_execution_state(
&ShadowedFunction::new(snippet),
initial_state.into(),
);
}
#[proptest(cases = 10)]
fn num_internal_registers_is_correct(#[strategy(arb())] guard: BFieldElement) {
fn test_case<const N: usize>(guard: BFieldElement) {
let offset = ChainMap::<{ N }>::NUM_INTERNAL_REGISTERS;
let raw_code = InnerFunction::RawCode(RawCode::new(
triton_asm! { check_env: dup {offset} push {guard} eq assert return },
DataType::Tuple(vec![]),
DataType::Tuple(vec![]),
));
let snippet = ChainMap::<N>::new(raw_code);
let initial_state = snippet.init_state(vec![guard], [1; N], rand::random());
test_rust_equivalence_given_execution_state(
&ShadowedFunction::new(snippet),
initial_state.into(),
);
}
test_case::<0>(guard);
test_case::<1>(guard);
test_case::<2>(guard);
test_case::<3>(guard);
test_case::<4>(guard);
test_case::<5>(guard);
test_case::<6>(guard);
test_case::<7>(guard);
test_case::<8>(guard);
test_case::<9>(guard);
test_case::<10>(guard);
test_case::<11>(guard);
test_case::<12>(guard);
}
#[test]
fn mapping_over_dynamic_length_items_works() {
let f = || {
let list_type = DataType::List(Box::new(DataType::Bfe));
InnerFunction::RawCode(RawCode::new(
triton_asm!(just_forty_twos: pop 2 push 42 return),
DataType::Tuple(vec![list_type, DataType::Bfe]),
DataType::Bfe,
))
};
assert!(f().domain().static_length().is_none());
test_chain_map_with_different_num_input_lists(f);
}
#[test]
fn mapping_over_list_of_lists_writing_their_lengths_works() {
let f = || {
let list_type = DataType::List(Box::new(DataType::Bfe));
InnerFunction::RawCode(RawCode::new(
triton_asm!(write_list_length: pop 1 read_mem 1 pop 1 return),
DataType::Tuple(vec![list_type, DataType::Bfe]),
DataType::Bfe,
))
};
assert!(f().domain().static_length().is_none());
test_chain_map_with_different_num_input_lists(f);
}
}
#[cfg(test)]
mod benches {
use super::tests::TestHashXFieldElement;
use super::*;
use crate::list::higher_order::inner_function::InnerFunction;
use crate::list::higher_order::inner_function::RawCode;
use crate::test_prelude::*;
#[test]
fn map_benchmark() {
let f = InnerFunction::BasicSnippet(Box::new(TestHashXFieldElement));
ShadowedFunction::new(Map::new(f)).bench();
}
#[test]
fn map_with_dyn_items_benchmark() {
let list_type = DataType::List(Box::new(DataType::Bfe));
let f = InnerFunction::RawCode(RawCode::new(
triton_asm!(dyn_length_elements: pop 2 push 42 return),
DataType::Tuple(vec![list_type, DataType::Bfe]),
DataType::Bfe,
));
ShadowedFunction::new(Map::new(f)).bench();
}
}