tfhe_fft/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
//! tfhe-fft is a pure Rust high performance fast Fourier transform library that processes
//! vectors of sizes that are powers of two.
//!
//! This library provides two FFT modules:
//! - The ordered module FFT applies a forward/inverse FFT that takes its input in standard
//! order, and outputs the result in standard order. For more detail on what the FFT
//! computes, check the ordered module-level documentation.
//! - The unordered module FFT applies a forward FFT that takes its input in standard order,
//! and outputs the result in a certain permuted order that may depend on the FFT plan. On the
//! other hand, the inverse FFT takes its input in that same permuted order and outputs its result
//! in standard order. This is useful for cases where the order of the coefficients in the
//! Fourier domain is not important. An example is using the Fourier transform for vector
//! convolution. The only operations that are performed in the Fourier domain are elementwise, and
//! so the order of the coefficients does not affect the results.
//!
//! Additionally, an optional 128-bit negacyclic FFT module is provided.
//!
//! # Features
//!
//! - `std` (default): This enables runtime arch detection for accelerated SIMD instructions, and
//! an FFT plan that measures the various implementations to choose the fastest one at runtime.
//! - `fft128`: This flag provides access to the 128-bit FFT, which is accessible in the
//! `fft128` module.
//! - `nightly`: This enables unstable Rust features to further speed up the FFT, by enabling
//! AVX512F instructions on CPUs that support them. This feature requires a nightly Rust
//! toolchain.
//! - `serde`: This enables serialization and deserialization functions for the unordered plan.
//! These allow for data in the Fourier domain to be serialized from the permuted order to the
//! standard order, and deserialized from the standard order to the permuted order.
//! This is needed since the inverse transform must be used with the same plan that
//! computed/deserialized the forward transform (or more specifically, a plan with the same
//! internal base FFT size).
//!
//! # Example
#![cfg_attr(feature = "std", doc = "```")]
#![cfg_attr(not(feature = "std"), doc = "```ignore")]
//! use tfhe_fft::c64;
//! use tfhe_fft::ordered::{Plan, Method};
//! use dyn_stack::{PodStack, GlobalPodBuffer, ReborrowMut};
//! use num_complex::ComplexFloat;
//! use std::time::Duration;
//!
//! const N: usize = 4;
//! let plan = Plan::new(4, Method::Measure(Duration::from_millis(10)));
//! let mut scratch_memory = GlobalPodBuffer::new(plan.fft_scratch().unwrap());
//! let mut stack = PodStack::new(&mut scratch_memory);
//!
//! let data = [
//! c64::new(1.0, 0.0),
//! c64::new(2.0, 0.0),
//! c64::new(3.0, 0.0),
//! c64::new(4.0, 0.0),
//! ];
//!
//! let mut transformed_fwd = data;
//! plan.fwd(&mut transformed_fwd, stack.rb_mut());
//!
//! let mut transformed_inv = transformed_fwd;
//! plan.inv(&mut transformed_inv, stack.rb_mut());
//!
//! for (actual, expected) in transformed_inv.iter().map(|z| z / N as f64).zip(data) {
//! assert!((expected - actual).abs() < 1e-9);
//! }
//! ```
#![cfg_attr(not(feature = "std"), no_std)]
#![allow(
clippy::erasing_op,
clippy::identity_op,
clippy::zero_prefixed_literal,
clippy::excessive_precision,
clippy::type_complexity,
clippy::too_many_arguments,
non_camel_case_types
)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![warn(rustdoc::broken_intra_doc_links)]
use core::marker::PhantomData;
use fft_simd::{FftSimd, Pod};
use num_complex::Complex64;
/// 64-bit complex floating point type.
pub type c64 = Complex64;
macro_rules! izip {
// implemented this way to avoid a bug with type hints in rust-analyzer
// https://github.com/rust-lang/rust-analyzer/issues/13526
(@ __closure @ ($a:expr)) => { |a| (a,) };
(@ __closure @ ($a:expr, $b:expr)) => { |(a, b)| (a, b) };
(@ __closure @ ($a:expr, $b:expr, $c:expr)) => { |((a, b), c)| (a, b, c) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr)) => { |(((a, b), c), d)| (a, b, c, d) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr)) => { |((((a, b), c), d), e)| (a, b, c, d, e) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr)) => { |(((((a, b), c), d), e), f)| (a, b, c, d, e, f) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr)) => { |((((((a, b), c), d), e), f), g)| (a, b, c, d, e, f, g) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr)) => { |(((((((a, b), c), d), e), f), g), h)| (a, b, c, d, e, f, g, h) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr, $i: expr)) => { |((((((((a, b), c), d), e), f), g), h), i)| (a, b, c, d, e, f, g, h, i) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr, $i: expr, $j: expr)) => { |(((((((((a, b), c), d), e), f), g), h), i), j)| (a, b, c, d, e, f, g, h, i, j) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr, $i: expr, $j: expr, $k: expr)) => { |((((((((((a, b), c), d), e), f), g), h), i), j), k)| (a, b, c, d, e, f, g, h, i, j, k) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr, $i: expr, $j: expr, $k: expr, $l: expr)) => { |(((((((((((a, b), c), d), e), f), g), h), i), j), k), l)| (a, b, c, d, e, f, g, h, i, j, k, l) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr, $i: expr, $j: expr, $k: expr, $l: expr, $m:expr)) => { |((((((((((((a, b), c), d), e), f), g), h), i), j), k), l), m)| (a, b, c, d, e, f, g, h, i, j, k, l, m) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr, $i: expr, $j: expr, $k: expr, $l: expr, $m:expr, $n:expr)) => { |(((((((((((((a, b), c), d), e), f), g), h), i), j), k), l), m), n)| (a, b, c, d, e, f, g, h, i, j, k, l, m, n) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr, $i: expr, $j: expr, $k: expr, $l: expr, $m:expr, $n:expr, $o:expr)) => { |((((((((((((((a, b), c), d), e), f), g), h), i), j), k), l), m), n), o)| (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) };
(@ __closure @ ($a:expr, $b:expr, $c:expr, $d:expr, $e: expr, $f:expr, $g:expr, $h:expr, $i: expr, $j: expr, $k: expr, $l: expr, $m:expr, $n:expr, $o:expr, $p: expr)) => { |(((((((((((((((a, b), c), d), e), f), g), h), i), j), k), l), m), n), o), p)| (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) };
( $first:expr $(,)?) => {
{
::core::iter::IntoIterator::into_iter($first)
}
};
( $first:expr, $($rest:expr),+ $(,)?) => {
{
::core::iter::IntoIterator::into_iter($first)
$(.zip($rest))*
.map(izip!(@ __closure @ ($first, $($rest),*)))
}
};
}
mod fft_simd;
mod nat;
#[cfg(feature = "std")]
pub(crate) mod time;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod x86;
type FnArray = [fn(&mut [c64], &mut [c64], &[c64], &[c64]); 10];
#[derive(Copy, Clone)]
struct FftImpl {
fwd: FnArray,
inv: FnArray,
}
impl FftImpl {
#[inline]
pub fn make_fn_ptr(&self, n: usize) -> [fn(&mut [c64], &mut [c64], &[c64], &[c64]); 2] {
let idx = n.trailing_zeros() as usize - 1;
[self.fwd[idx], self.inv[idx]]
}
}
/// Computes the FFT of size 2^(N+1).
trait RecursiveFft: nat::Nat {
fn fft_recurse_impl<c64xN: Pod>(
simd: impl FftSimd<c64xN>,
fwd: bool,
read_from_x: bool,
s: usize,
x: &mut [c64xN],
y: &mut [c64xN],
w_init: &[c64xN],
w: &[c64],
);
}
#[inline]
fn fn_ptr<const FWD: bool, N: RecursiveFft, c64xN: Pod, Simd: FftSimd<c64xN>>(
simd: Simd,
) -> fn(&mut [c64], &mut [c64], &[c64], &[c64]) {
// we can't pass `simd` to the closure even though it's a zero-sized struct,
// because we want the closure to be coercible to a function pointer.
// so we ignore the passed parameter and reconstruct it inside the closure -------------
let _ = simd;
#[inline(never)]
|buf: &mut [c64], scratch: &mut [c64], w_init: &[c64], w: &[c64]| {
struct Impl<'a, const FWD: bool, N, c64xN, Simd> {
simd: Simd,
buf: &'a mut [c64],
scratch: &'a mut [c64],
w_init: &'a [c64],
w: &'a [c64],
__marker: PhantomData<(N, c64xN)>,
}
// `simd` is reconstructed here. we know the unwrap can never fail because it was already
// passed to us as a function parameter, which proves that it's possible to construct.
let simd = Simd::try_new().unwrap();
// we use NullaryFnOnce instead of a closure because we need the #[inline(always)]
// annotation, which doesn't always work with closures for some reason.
impl<const FWD: bool, N: RecursiveFft, c64xN: Pod, Simd: FftSimd<c64xN>> pulp::NullaryFnOnce
for Impl<'_, FWD, N, c64xN, Simd>
{
type Output = ();
#[inline(always)]
fn call(self) -> Self::Output {
let Self {
simd,
buf,
scratch,
w_init,
w,
__marker: _,
} = self;
let n = 1 << (N::VALUE + 1);
assert_eq!(buf.len(), n);
assert_eq!(scratch.len(), n);
assert_eq!(w_init.len(), n);
assert_eq!(w.len(), n);
N::fft_recurse_impl(
simd,
FWD,
true,
1,
bytemuck::cast_slice_mut(buf),
bytemuck::cast_slice_mut(scratch),
bytemuck::cast_slice(w_init),
w,
);
}
}
simd.vectorize(Impl::<FWD, N, c64xN, Simd> {
simd,
buf,
scratch,
w_init,
w,
__marker: PhantomData,
})
}
}
mod dif2;
mod dit2;
mod dif4;
mod dit4;
mod dif8;
mod dit8;
mod dif16;
mod dit16;
pub mod ordered;
pub mod unordered;
#[cfg(feature = "fft128")]
#[cfg_attr(docsrs, doc(cfg(feature = "fft128")))]
pub mod fft128;