thread_tree/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
//!
//! A hierarchical thread pool used for splitting work in a branching fashion.
//!
//! This thread pool is good for:
//!
//! - You want to split work recursively in jobs that use approximately the same time.
//! - You want thread pool overhead to be low
//!
//! This is not good for:
//!
//! - You need work stealing
//! - When you have jobs of uneven size
//!
// Stack jobs and job execution implementation based on rayon-core by Niko Matsakis and Josh Stone
//
use crossbeam_channel::{Sender, bounded};
use std::thread;
mod unwind;
mod job;
use crate::job::{JobRef, StackJob};
// ThreadTree message on the channel (is just a job ref)
type TTreeMessage = JobRef;
/// A hierarchical thread pool used for splitting work in a branching fashion.
///
/// See [`ThreadTree::new_with_level()`] to create a new thread tree,
/// and see [`ThreadTree::top()`] for a usage example.
///
/// The thread tree has the benefit that at each level, jobs can be sent directly to the thread
/// that is going to execute it - that means there is no contention between waiting threads. The
/// downside is that the structure of the thread tree is rather static.
#[derive(Debug)]
pub struct ThreadTree {
sender: Option<Sender<TTreeMessage>>,
child: Option<[Box<ThreadTree>; 2]>,
}
// Only three threads needed to have four leaves, see below.
//
// (root)
// (1) 2
// (1.1) 1.2 (2.1) 2.2
//
// Leaves 1.1, 1.2, 2.1 and 2.2 but only 1.2, 2, and 2.2 are new threads - the others inherit the
// current thread from the parent. That means we have a fanout of four (leaves 1.1 trough 2.2)
// using the current thread and three additional threads.
//
// The implementation is such that the root holds ownership of leaf 2, and the root contains a
// channel sender that passes jobs to the node 2. Further nodes down continue the same way
// recursively.
//
// Idea for later: implement reservations of (parts of) the tree?
// So that a 2-2 tree can be used as two separate 1-2 trees simultaneously
impl ThreadTree {
const BOTTOM: &'static Self = &ThreadTree::new_level0();
/// Create a level 0 tree (with no parallelism)
#[inline]
pub const fn new_level0() -> Self {
ThreadTree { sender: None, child: None }
}
/// Create an n-level thread tree with 2<sup>n</sup> leaves
///
/// Level 0 has no parallelism
/// Level 1 has two nodes
/// Level 2 has four nodes (et.c.)
///
/// Level must be <= 12; panics on invalid input
pub fn new_with_level(level: usize) -> Box<Self> {
assert!(level <= 12,
"Input exceeds maximum level 12 (equivalent to 2**12 - 1 threads), got level='{}'",
level);
if level == 0 {
Box::new(Self::new_level0())
} else if level == 1 {
Box::new(ThreadTree { sender: Some(Self::add_thread()), child: None })
} else {
let fork_2 = Self::new_with_level(level - 1);
let fork_3 = Self::new_with_level(level - 1);
Box::new(ThreadTree { sender: Some(Self::add_thread()), child: Some([fork_2, fork_3])})
}
}
/// Return true if this is a non-dummy pool which will parallelize in join
#[inline]
pub fn is_parallel(&self) -> bool {
self.sender.is_some()
}
/// Get the top thread tree context, where we can inject tasks with join.
/// Each job gets a sub-context that can be used to inject tasks further down the corresponding
/// branch of the tree.
///
/// **Note** to avoid deadlocks, tasks should never be injected into a tree context that
/// doesn't belong to the current level. To avoid this should be easy - only call .top() at the
/// top level.
///
/// The following example shows using a two-level tree and using context to spawn tasks.
///
/// ```
/// use thread_tree::{ThreadTree, ThreadTreeCtx};
///
/// let tp = ThreadTree::new_with_level(2);
///
/// fn f(index: i32, ctx: ThreadTreeCtx<'_>) -> i32 {
/// // do work in subtasks here
/// let (a, b) = ctx.join(move |_| index + 1, |_| index + 2);
///
/// return a + b;
/// }
///
/// let (r0, r1) = tp.top().join(|ctx| f(0, ctx), |ctx| f(1, ctx));
///
/// assert_eq!(r0 + r1, (0 + 1) + (0 + 2) + (1 + 1) + (1 + 2));
/// ```
#[inline]
pub fn top(&self) -> ThreadTreeCtx<'_> {
ThreadTreeCtx::from(self)
}
// Create a new thread that executes jobs, and return the channel sender that feeds jobs to
// this thread.
fn add_thread() -> Sender<TTreeMessage> {
let (sender, receiver) = bounded::<TTreeMessage>(1); // buffered, we know we have a connection
std::thread::spawn(move || {
for job in receiver {
unsafe {
job.execute()
}
}
});
sender
}
}
/// A level-specific handle to the thread tree, that can be used to inject jobs.
///
/// See [`ThreadTree::top()`] for more information.
#[derive(Debug, Copy, Clone)]
pub struct ThreadTreeCtx<'a> {
tree: &'a ThreadTree,
// This handle is marked as non-Send/Sync as a help - there is nothing safety critical about it
// - but it helps the user to avoid deadlocks - see the top method.
_not_send_sync: *const (),
}
impl ThreadTreeCtx<'_> {
#[inline]
pub(crate) fn get(&self) -> &ThreadTree { self.tree }
#[inline]
pub(crate) fn from(tree: &ThreadTree) -> ThreadTreeCtx<'_> {
ThreadTreeCtx { tree, _not_send_sync: &() }
}
/// Return true if this level will parallelize in join (or if we are at the bottom of the tree)
#[inline]
pub fn is_parallel(&self) -> bool {
self.get().is_parallel()
}
/// Branch out and run a and b simultaneously and return their results jointly.
///
/// Job `a` runs on the current thread while `b` runs on the sibling thread; each is passed
/// a lower level of the thread tree.
/// If the bottom of the tree is reached, where no sibling threads are available, both `a` and
/// `b` run on the current thread.
///
/// If either `a` or `b` panics, the panic is propagated here. If both jobs are executing,
/// the panic will not propagate until after both jobs have finished.
///
/// Warning: You must not .join() into the same tree from nested jobs. Nested jobs must
/// be spawned using the context that each job receives as the first parameter.
pub fn join<A, B, RA, RB>(&self, a: A, b: B) -> (RA, RB)
where A: FnOnce(ThreadTreeCtx) -> RA + Send,
B: FnOnce(ThreadTreeCtx) -> RB + Send,
RA: Send,
RB: Send,
{
let bottom_level = ThreadTree::BOTTOM;
let self_ = self.get();
let (fork_a, fork_b) = match &self_.child {
None => (bottom_level, bottom_level),
Some([fa, fb]) => (&**fa, &**fb),
};
//assert!(self_.sender.is_some());
unsafe {
let a = move || a(ThreadTreeCtx::from(fork_a));
let b = move || b(ThreadTreeCtx::from(fork_b));
// first send B to the sibling thread
let b_job = StackJob::new(b); // plant this safely on the stack
let b_job_ref = JobRef::new(&b_job);
let b_runs_here = match self_.sender {
Some(ref s) => { s.send(b_job_ref).unwrap(); None }
None => Some(b_job_ref),
};
let a_result;
{
// Ensure that we will later wait for B, if it is running on
// another thread. Both in the case of A panic or regular scope exit.
//
// If job A panics, we still cannot return until we are sure that job
// B is complete. This is because it may contain references into the
// enclosing stack frame(s).
let _wait_for_b_guard = match b_runs_here {
None => Some(WaitForJobGuard::new(&b_job)),
Some(_) => None,
};
// Execute task A
a_result = a();
if let Some(b_job_ref) = b_runs_here {
b_job_ref.execute();
}
// wait for b here
}
(a_result, b_job.into_result())
}
}
/// Branch out twice and join, running three different jobs
///
/// Branches twice on the left side and once on the right.
/// The closure is called with corresponding thread tree context and an index in 0..3 for the job.
pub fn join3l<A, RA>(&self, a: &A) -> ((RA, RA), RA)
where A: Fn(ThreadTreeCtx, usize) -> RA + Sync,
RA: Send,
{
self.join(
move |ctx| ctx.join(move |ctx| a(ctx, 0), move |ctx| a(ctx, 1)),
move |ctx| a(ctx, 2))
}
/// Branch out twice and join, running three different jobs
///
/// Branches once on the right side and twice on the right.
/// The closure is called with corresponding thread tree context and an index in 0..3 for the job.
pub fn join3r<A, RA>(&self, a: &A) -> (RA, (RA, RA))
where A: Fn(ThreadTreeCtx, usize) -> RA + Sync,
RA: Send,
{
self.join(
move |ctx| a(ctx, 0),
move |ctx| ctx.join(move |ctx| a(ctx, 1), move |ctx| a(ctx, 2)))
}
/// Branch out twice and join, running four different jobs.
///
/// Branches twice on each side.
/// The closure is called with corresponding thread tree context and an index in 0..4 for the job.
pub fn join4<A, RA>(&self, a: &A) -> ((RA, RA), (RA, RA))
where A: Fn(ThreadTreeCtx, usize) -> RA + Sync,
RA: Send,
{
self.join(
move |ctx| ctx.join(move |ctx| a(ctx, 0), move |ctx| a(ctx, 1)),
move |ctx| ctx.join(move |ctx| a(ctx, 2), move |ctx| a(ctx, 3)))
}
}
fn wait_for_job<F, R>(job: &StackJob<F, R>) {
while !job.probe() {
//spin_loop_hint();
thread::yield_now();
}
}
struct WaitForJobGuard<'a, F, R> {
job: &'a StackJob<F, R>,
}
impl<'a, F, R> WaitForJobGuard<'a, F, R>
{
fn new(job: &'a StackJob<F, R>) -> Self {
Self { job }
}
}
impl<'a, F, R> Drop for WaitForJobGuard<'a, F, R> {
fn drop(&mut self) {
wait_for_job(self.job)
}
}
#[cfg(test)]
mod thread_tree_tests {
use super::*;
#[allow(deprecated)]
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use std::sync::Mutex;
use once_cell::sync::Lazy;
use std::collections::HashSet;
use std::thread;
use std::thread::ThreadId;
#[allow(deprecated)]
fn sleep_ms(x: u32) {
std::thread::sleep_ms(x)
}
#[test]
fn stub() {
let tp = ThreadTree::new_level0();
let a = AtomicUsize::new(0);
let b = AtomicUsize::new(0);
tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
|_| b.fetch_add(1, Ordering::SeqCst));
assert_eq!(a.load(Ordering::SeqCst), 1);
assert_eq!(b.load(Ordering::SeqCst), 1);
let f = || thread::current().id();
let (aid, bid) = tp.top().join(|_| f(), |_| f());
assert_eq!(aid, bid);
assert!(!tp.top().is_parallel());
}
#[test]
fn new_level_1() {
let tp = ThreadTree::new_with_level(1);
let a = AtomicUsize::new(0);
let b = AtomicUsize::new(0);
tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
|_| b.fetch_add(1, Ordering::SeqCst));
assert_eq!(a.load(Ordering::SeqCst), 1);
assert_eq!(b.load(Ordering::SeqCst), 1);
let f = || thread::current().id();
let (aid, bid) = tp.top().join(|_| f(), |_| f());
assert_ne!(aid, bid);
assert!(tp.top().is_parallel());
}
#[test]
fn build_level_2() {
let tp = ThreadTree::new_with_level(2);
let a = AtomicUsize::new(0);
let b = AtomicUsize::new(0);
tp.top().join(|_| a.fetch_add(1, Ordering::SeqCst),
|_| b.fetch_add(1, Ordering::SeqCst));
assert_eq!(a.load(Ordering::SeqCst), 1);
assert_eq!(b.load(Ordering::SeqCst), 1);
let f = || thread::current().id();
let ((aid, bid), (cid, did)) = tp.top().join(
|tp1| tp1.join(|_| f(), |_| f()),
|tp1| tp1.join(|_| f(), |_| f()));
assert_ne!(aid, bid);
assert_ne!(aid, cid);
assert_ne!(aid, did);
assert_ne!(bid, cid);
assert_ne!(bid, did);
assert_ne!(cid, did);
}
#[test]
fn overload_2_2() {
let global = ThreadTree::new_with_level(1);
let tp = ThreadTree::new_with_level(2);
let a = AtomicUsize::new(0);
let range = 0..100;
let work = |ctx: ThreadTreeCtx<'_>| {
let subwork = || {
for i in range.clone() {
a.fetch_add(i, Ordering::Relaxed);
sleep_ms(1);
}
};
ctx.join(|_| subwork(), |_| subwork());
};
global.top().join(
|_| tp.top().join(work, work),
|_| tp.top().join(work, work));
let sum = range.clone().sum::<usize>();
assert_eq!(sum * 4 * 2, a.load(Ordering::SeqCst));
}
#[test]
fn deep_tree() {
static THREADS: Lazy<Mutex<HashSet<ThreadId>>> = Lazy::new(|| Mutex::default());
const TREE_LEVEL: usize = 8;
const MAX_DEPTH: usize = 12;
static COUNT: AtomicUsize = AtomicUsize::new(0);
let tp = ThreadTree::new_with_level(TREE_LEVEL);
fn f(tp: ThreadTreeCtx<'_>, depth: usize) {
COUNT.fetch_add(1, Ordering::SeqCst);
THREADS.lock().unwrap().insert(thread::current().id());
if depth >= MAX_DEPTH {
return;
}
tp.join(
|ctx| {
f(ctx, depth + 1);
},
|ctx| {
f(ctx, depth + 1);
});
}
COUNT.fetch_add(2, Ordering::SeqCst); // for the two invocations below.
tp.top().join(|ctx| f(ctx, 2), |ctx| f(ctx, 2));
let visited_threads = THREADS.lock().unwrap().len();
assert_eq!(visited_threads, 1 << TREE_LEVEL);
assert_eq!(COUNT.load(Ordering::SeqCst), 1 << MAX_DEPTH);
}
#[test]
#[should_panic]
fn panic_a() {
let pool = ThreadTree::new_with_level(1);
pool.top().join(|_| panic!("Panic in A"), |_| 1 + 1);
}
#[test]
#[should_panic]
fn panic_b() {
let pool = ThreadTree::new_with_level(1);
pool.top().join(|_| 1 + 1, |_| panic!());
}
#[test]
#[should_panic]
fn panic_both_in_threads() {
let pool = ThreadTree::new_with_level(1);
pool.top().join(|_| { sleep_ms(50); panic!("Panic in A") }, |_| panic!("Panic in B"));
}
#[test]
#[should_panic]
fn panic_both_bottom() {
let pool = ThreadTree::new_with_level(0);
pool.top().join(|_| { sleep_ms(50); panic!("Panic in A") }, |_| panic!("Panic in B"));
}
#[test]
fn on_panic_a_wait_for_b() {
let pool = ThreadTree::new_with_level(1);
for i in 0..3 {
let start = AtomicUsize::new(0);
let finish = AtomicUsize::new(0);
let result = unwind::halt_unwinding(|| {
pool.top().join(
|_| panic!("Panic in A"),
|_| {
start.fetch_add(1, Ordering::SeqCst);
sleep_ms(50);
finish.fetch_add(1, Ordering::SeqCst);
});
});
let start_count = start.load(Ordering::SeqCst);
let finish_count = finish.load(Ordering::SeqCst);
assert_eq!(start_count, finish_count);
assert!(result.is_err());
println!("Pass {} with start: {} == finish {}", i,
start_count, finish_count);
}
}
}