1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.

use std::borrow::Borrow;
use std::cmp::Eq;
use std::cmp::PartialEq;
use std::ops::Bound;
use std::ops::Range;
use std::ops::RangeBounds;
use std::ops::RangeFrom;
use std::ops::RangeFull;
use std::ops::RangeInclusive;
use std::ops::RangeTo;
use std::ops::RangeToInclusive;

#[cfg(test)]
use proptest_derive::Arbitrary;

use super::Key;
use crate::proto::kvrpcpb;

/// A struct for expressing ranges. This type is semi-opaque and is not really meant for users to
/// deal with directly. Most functions which operate on ranges will accept any types which
/// implement `Into<BoundRange>`.
///
/// In TiKV, keys are an ordered sequence of bytes. This means we can have ranges over those
/// bytes. Eg `001` is before `010`.
///
/// **Minimum key**: there is the minimum key: empty key. So a range may not be unbounded below.
/// The unbounded lower bound in a [`Range`](Range) will be converted to an empty key.
///
/// **Maximum key**: There is no limit of the maximum key. When an empty key is used as the upper bound, it means upper unbounded.
/// The unbounded upper bound in a [`Range`](Range). The range covering all keys is just `Key::EMPTY..`.
///
/// **But, you should not need to worry about all this:** Most functions which operate
/// on ranges will accept any types which implement `Into<BoundRange>`.
/// Common range types like `a..b`, `a..=b` has implemented `Into<BoundRange>`where `a` and `b`
/// `impl Into<Key>`. You can implement `Into<BoundRange>` for your own types by using `try_from`.
/// It means all of the following types in the example can be passed directly to those functions.
///
/// # Examples
/// ```rust
/// # use std::ops::{Range, RangeInclusive, RangeTo, RangeToInclusive, RangeFrom, RangeFull, Bound};
/// # use std::convert::TryInto;
/// # use tikv_client::{Key, BoundRange};
///
/// let explict_range: Range<Key> = Range { start: Key::from("Rust".to_owned()), end: Key::from("TiKV".to_owned()) };
/// let from_explict_range: BoundRange = explict_range.into();
///
/// let range: Range<String> = "Rust".to_owned().."TiKV".to_owned();
/// let from_range: BoundRange = range.into();
/// assert_eq!(from_explict_range, from_range);
///
/// let range: RangeInclusive<String> = "Rust".to_owned()..="TiKV".to_owned();
/// let from_range: BoundRange = range.into();
/// assert_eq!(
///     from_range,
///     (Bound::Included(Key::from("Rust".to_owned())), Bound::Included(Key::from("TiKV".to_owned()))),
/// );
///
/// let range_from: RangeFrom<String> = "Rust".to_owned()..;
/// let from_range_from: BoundRange = range_from.into();
/// assert_eq!(
///     from_range_from,
///     (Bound::Included(Key::from("Rust".to_owned())), Bound::Unbounded),
/// );
/// ```
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(test, derive(Arbitrary))]
pub struct BoundRange {
    pub from: Bound<Key>,
    pub to: Bound<Key>,
}

impl BoundRange {
    /// Create a new BoundRange.
    ///
    /// The caller must ensure that `from` is not `Unbounded`.
    pub fn new(from: Bound<Key>, to: Bound<Key>) -> BoundRange {
        BoundRange { from, to }
    }

    /// Create a new BoundRange bounded below by `from` and unbounded above.
    pub fn range_from(from: Key) -> BoundRange {
        BoundRange {
            from: Bound::Included(from),
            to: Bound::Unbounded,
        }
    }

    /// Ranges used in scanning TiKV have a particularity to them.
    ///
    /// The **start** of a scan is inclusive, unless appended with an '\0', then it is exclusive.
    ///
    /// The **end** of a scan is exclusive, unless appended with an '\0', then it is inclusive.
    ///
    /// # Examples
    /// ```rust
    /// use tikv_client::{BoundRange, Key, IntoOwnedRange};
    /// // Exclusive
    /// let range = "a".."z";
    /// assert_eq!(
    ///     BoundRange::from(range.into_owned()).into_keys(),
    ///     (Key::from("a".to_owned()), Some(Key::from("z".to_owned()))),
    /// );
    /// // Inclusive
    /// let range = "a"..="z";
    /// assert_eq!(
    ///     BoundRange::from(range.into_owned()).into_keys(),
    ///     (Key::from("a".to_owned()), Some(Key::from("z\0".to_owned()))),
    /// );
    /// // Open right
    /// let range = "a".to_owned()..;
    /// assert_eq!(
    ///     BoundRange::from(range).into_keys(),
    ///     (Key::from("a".to_owned()), None),
    /// );
    /// // Left open right exclusive
    /// let range = .."z";
    /// assert_eq!(
    ///     BoundRange::from(range.into_owned()).into_keys(),
    ///     (Key::from("".to_owned()), Some(Key::from("z".to_owned()))),
    /// );
    /// // Left open right inclusive
    /// let range = ..="z";
    /// assert_eq!(
    ///     BoundRange::from(range.into_owned()).into_keys(),
    ///     (Key::from("".to_owned()), Some(Key::from("z\0".to_owned()))),
    /// );
    /// // Full range
    /// let range = ..;
    /// assert_eq!(
    ///     BoundRange::from(range).into_keys(),
    ///     (Key::from("".to_owned()), None),
    /// );
    // ```
    pub fn into_keys(self) -> (Key, Option<Key>) {
        let start = match self.from {
            Bound::Included(v) => v,
            Bound::Excluded(mut v) => {
                v.push_zero();
                v
            }
            Bound::Unbounded => Key::EMPTY,
        };
        let end = match self.to {
            Bound::Included(mut v) => {
                v.push_zero();
                Some(v)
            }
            Bound::Excluded(v) => Some(v),
            Bound::Unbounded => None,
        };
        (start, end)
    }
}

impl RangeBounds<Key> for BoundRange {
    // clippy will act differently on nightly and stable, so we allow `needless_match` here.
    #[allow(clippy::needless_match)]
    fn start_bound(&self) -> Bound<&Key> {
        match &self.from {
            Bound::Included(f) => Bound::Included(f),
            Bound::Excluded(f) => Bound::Excluded(f),
            Bound::Unbounded => Bound::Unbounded,
        }
    }

    fn end_bound(&self) -> Bound<&Key> {
        match &self.to {
            Bound::Included(t) => {
                if t.is_empty() {
                    Bound::Unbounded
                } else {
                    Bound::Included(t)
                }
            }
            Bound::Excluded(t) => {
                if t.is_empty() {
                    Bound::Unbounded
                } else {
                    Bound::Excluded(t)
                }
            }
            Bound::Unbounded => Bound::Unbounded,
        }
    }
}

// FIXME `==` should not `clone`
impl<T: Into<Key> + Clone> PartialEq<(Bound<T>, Bound<T>)> for BoundRange {
    fn eq(&self, other: &(Bound<T>, Bound<T>)) -> bool {
        self.from == convert_to_bound_key(other.0.clone())
            && self.to == convert_to_bound_key(other.1.clone())
    }
}

impl<T: Into<Key>> From<Range<T>> for BoundRange {
    fn from(other: Range<T>) -> BoundRange {
        BoundRange::new(
            Bound::Included(other.start.into()),
            Bound::Excluded(other.end.into()),
        )
    }
}

impl<T: Into<Key>> From<RangeFrom<T>> for BoundRange {
    fn from(other: RangeFrom<T>) -> BoundRange {
        BoundRange::new(Bound::Included(other.start.into()), Bound::Unbounded)
    }
}

impl<T: Into<Key>> From<RangeTo<T>> for BoundRange {
    fn from(other: RangeTo<T>) -> BoundRange {
        BoundRange::new(Bound::Unbounded, Bound::Excluded(other.end.into()))
    }
}

impl<T: Into<Key>> From<RangeInclusive<T>> for BoundRange {
    fn from(other: RangeInclusive<T>) -> BoundRange {
        let (start, end) = other.into_inner();
        BoundRange::new(Bound::Included(start.into()), Bound::Included(end.into()))
    }
}

impl<T: Into<Key>> From<RangeToInclusive<T>> for BoundRange {
    fn from(other: RangeToInclusive<T>) -> BoundRange {
        BoundRange::new(Bound::Unbounded, Bound::Included(other.end.into()))
    }
}

impl From<RangeFull> for BoundRange {
    fn from(_other: RangeFull) -> BoundRange {
        BoundRange::new(Bound::Unbounded, Bound::Unbounded)
    }
}

impl<T: Into<Key>> From<(T, Option<T>)> for BoundRange {
    fn from(other: (T, Option<T>)) -> BoundRange {
        let to = match other.1 {
            None => Bound::Unbounded,
            Some(to) => to.into().into_upper_bound(),
        };

        BoundRange::new(other.0.into().into_lower_bound(), to)
    }
}

impl<T: Into<Key>> From<(T, T)> for BoundRange {
    fn from(other: (T, T)) -> BoundRange {
        BoundRange::new(
            other.0.into().into_lower_bound(),
            other.1.into().into_upper_bound(),
        )
    }
}

impl<T: Into<Key> + Eq> From<(Bound<T>, Bound<T>)> for BoundRange {
    fn from(bounds: (Bound<T>, Bound<T>)) -> BoundRange {
        BoundRange::new(
            convert_to_bound_key(bounds.0),
            convert_to_bound_key(bounds.1),
        )
    }
}

impl From<BoundRange> for kvrpcpb::KeyRange {
    fn from(bound_range: BoundRange) -> Self {
        let (start, end) = bound_range.into_keys();
        let mut range = kvrpcpb::KeyRange::default();
        range.start_key = start.into();
        range.end_key = end.unwrap_or_default().into();
        range
    }
}

impl From<kvrpcpb::KeyRange> for BoundRange {
    fn from(range: kvrpcpb::KeyRange) -> Self {
        let start_key = Key::from(range.start_key);
        let end_key = Key::from(range.end_key);
        BoundRange::new(start_key.into_lower_bound(), end_key.into_upper_bound())
    }
}

/// A convenience trait for converting ranges of borrowed types into a `BoundRange`.
///
/// # Examples
/// ```rust
/// # use tikv_client::{IntoOwnedRange, BoundRange};
/// # use std::ops::*;
/// let r1: Range<&str> = "s".."e";
/// let r1: BoundRange = r1.into_owned();
///
/// let r2: RangeFrom<&str> = "start"..;
/// let r2: BoundRange = r2.into_owned();
///
/// let r3: RangeInclusive<&str> = "s"..="e";
/// let r3: BoundRange = r3.into_owned();
///
/// let r4: RangeTo<&str> = .."z";
/// let r4: BoundRange = r4.into_owned();
///
/// let k1: Vec<u8> = "start".to_owned().into_bytes();
/// let k2: Vec<u8> = "end".to_owned().into_bytes();
/// let r4: BoundRange = (&k1, &k2).into_owned();
/// let r5: BoundRange = (&k1, None).into_owned();
/// let r6: BoundRange = (&k1, Some(&k2)).into_owned();
/// ```
pub trait IntoOwnedRange {
    /// Transform a borrowed range of some form into an owned `BoundRange`.
    fn into_owned(self) -> BoundRange;
}

impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for Range<&U> {
    fn into_owned(self) -> BoundRange {
        From::from(Range {
            start: self.start.to_owned(),
            end: self.end.to_owned(),
        })
    }
}

impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for RangeFrom<&U> {
    fn into_owned(self) -> BoundRange {
        From::from(RangeFrom {
            start: self.start.to_owned(),
        })
    }
}

impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for RangeTo<&U> {
    fn into_owned(self) -> BoundRange {
        From::from(RangeTo {
            end: self.end.to_owned(),
        })
    }
}

impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange
    for RangeInclusive<&U>
{
    fn into_owned(self) -> BoundRange {
        let (from, to) = self.into_inner();
        From::from(RangeInclusive::new(from.to_owned(), to.to_owned()))
    }
}

impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange
    for RangeToInclusive<&U>
{
    fn into_owned(self) -> BoundRange {
        From::from(RangeToInclusive {
            end: self.end.to_owned(),
        })
    }
}

impl IntoOwnedRange for RangeFull {
    fn into_owned(self) -> BoundRange {
        From::from(self)
    }
}

impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for (&U, Option<&U>) {
    fn into_owned(self) -> BoundRange {
        From::from((self.0.to_owned(), self.1.map(|u| u.to_owned())))
    }
}

impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for (&U, &U) {
    fn into_owned(self) -> BoundRange {
        From::from((self.0.to_owned(), self.1.to_owned()))
    }
}

fn convert_to_bound_key<K: Into<Key>>(b: Bound<K>) -> Bound<Key> {
    match b {
        Bound::Included(k) => Bound::Included(k.into()),
        Bound::Excluded(k) => Bound::Excluded(k.into()),
        Bound::Unbounded => Bound::Unbounded,
    }
}