1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.
use std::borrow::Borrow;
use std::cmp::Eq;
use std::cmp::PartialEq;
use std::ops::Bound;
use std::ops::Range;
use std::ops::RangeBounds;
use std::ops::RangeFrom;
use std::ops::RangeFull;
use std::ops::RangeInclusive;
use std::ops::RangeTo;
use std::ops::RangeToInclusive;
#[cfg(test)]
use proptest_derive::Arbitrary;
use super::Key;
use crate::proto::kvrpcpb;
/// A struct for expressing ranges. This type is semi-opaque and is not really meant for users to
/// deal with directly. Most functions which operate on ranges will accept any types which
/// implement `Into<BoundRange>`.
///
/// In TiKV, keys are an ordered sequence of bytes. This means we can have ranges over those
/// bytes. Eg `001` is before `010`.
///
/// **Minimum key**: there is the minimum key: empty key. So a range may not be unbounded below.
/// The unbounded lower bound in a [`Range`](Range) will be converted to an empty key.
///
/// **Maximum key**: There is no limit of the maximum key. When an empty key is used as the upper bound, it means upper unbounded.
/// The unbounded upper bound in a [`Range`](Range). The range covering all keys is just `Key::EMPTY..`.
///
/// **But, you should not need to worry about all this:** Most functions which operate
/// on ranges will accept any types which implement `Into<BoundRange>`.
/// Common range types like `a..b`, `a..=b` has implemented `Into<BoundRange>`where `a` and `b`
/// `impl Into<Key>`. You can implement `Into<BoundRange>` for your own types by using `try_from`.
/// It means all of the following types in the example can be passed directly to those functions.
///
/// # Examples
/// ```rust
/// # use std::ops::{Range, RangeInclusive, RangeTo, RangeToInclusive, RangeFrom, RangeFull, Bound};
/// # use std::convert::TryInto;
/// # use tikv_client::{Key, BoundRange};
///
/// let explict_range: Range<Key> = Range { start: Key::from("Rust".to_owned()), end: Key::from("TiKV".to_owned()) };
/// let from_explict_range: BoundRange = explict_range.into();
///
/// let range: Range<String> = "Rust".to_owned().."TiKV".to_owned();
/// let from_range: BoundRange = range.into();
/// assert_eq!(from_explict_range, from_range);
///
/// let range: RangeInclusive<String> = "Rust".to_owned()..="TiKV".to_owned();
/// let from_range: BoundRange = range.into();
/// assert_eq!(
/// from_range,
/// (Bound::Included(Key::from("Rust".to_owned())), Bound::Included(Key::from("TiKV".to_owned()))),
/// );
///
/// let range_from: RangeFrom<String> = "Rust".to_owned()..;
/// let from_range_from: BoundRange = range_from.into();
/// assert_eq!(
/// from_range_from,
/// (Bound::Included(Key::from("Rust".to_owned())), Bound::Unbounded),
/// );
/// ```
#[derive(Clone, Debug, Eq, PartialEq)]
#[cfg_attr(test, derive(Arbitrary))]
pub struct BoundRange {
pub from: Bound<Key>,
pub to: Bound<Key>,
}
impl BoundRange {
/// Create a new BoundRange.
///
/// The caller must ensure that `from` is not `Unbounded`.
pub fn new(from: Bound<Key>, to: Bound<Key>) -> BoundRange {
BoundRange { from, to }
}
/// Create a new BoundRange bounded below by `from` and unbounded above.
pub fn range_from(from: Key) -> BoundRange {
BoundRange {
from: Bound::Included(from),
to: Bound::Unbounded,
}
}
/// Ranges used in scanning TiKV have a particularity to them.
///
/// The **start** of a scan is inclusive, unless appended with an '\0', then it is exclusive.
///
/// The **end** of a scan is exclusive, unless appended with an '\0', then it is inclusive.
///
/// # Examples
/// ```rust
/// use tikv_client::{BoundRange, Key, IntoOwnedRange};
/// // Exclusive
/// let range = "a".."z";
/// assert_eq!(
/// BoundRange::from(range.into_owned()).into_keys(),
/// (Key::from("a".to_owned()), Some(Key::from("z".to_owned()))),
/// );
/// // Inclusive
/// let range = "a"..="z";
/// assert_eq!(
/// BoundRange::from(range.into_owned()).into_keys(),
/// (Key::from("a".to_owned()), Some(Key::from("z\0".to_owned()))),
/// );
/// // Open right
/// let range = "a".to_owned()..;
/// assert_eq!(
/// BoundRange::from(range).into_keys(),
/// (Key::from("a".to_owned()), None),
/// );
/// // Left open right exclusive
/// let range = .."z";
/// assert_eq!(
/// BoundRange::from(range.into_owned()).into_keys(),
/// (Key::from("".to_owned()), Some(Key::from("z".to_owned()))),
/// );
/// // Left open right inclusive
/// let range = ..="z";
/// assert_eq!(
/// BoundRange::from(range.into_owned()).into_keys(),
/// (Key::from("".to_owned()), Some(Key::from("z\0".to_owned()))),
/// );
/// // Full range
/// let range = ..;
/// assert_eq!(
/// BoundRange::from(range).into_keys(),
/// (Key::from("".to_owned()), None),
/// );
// ```
pub fn into_keys(self) -> (Key, Option<Key>) {
let start = match self.from {
Bound::Included(v) => v,
Bound::Excluded(mut v) => {
v.push_zero();
v
}
Bound::Unbounded => Key::EMPTY,
};
let end = match self.to {
Bound::Included(mut v) => {
v.push_zero();
Some(v)
}
Bound::Excluded(v) => Some(v),
Bound::Unbounded => None,
};
(start, end)
}
}
impl RangeBounds<Key> for BoundRange {
// clippy will act differently on nightly and stable, so we allow `needless_match` here.
#[allow(clippy::needless_match)]
fn start_bound(&self) -> Bound<&Key> {
match &self.from {
Bound::Included(f) => Bound::Included(f),
Bound::Excluded(f) => Bound::Excluded(f),
Bound::Unbounded => Bound::Unbounded,
}
}
fn end_bound(&self) -> Bound<&Key> {
match &self.to {
Bound::Included(t) => {
if t.is_empty() {
Bound::Unbounded
} else {
Bound::Included(t)
}
}
Bound::Excluded(t) => {
if t.is_empty() {
Bound::Unbounded
} else {
Bound::Excluded(t)
}
}
Bound::Unbounded => Bound::Unbounded,
}
}
}
// FIXME `==` should not `clone`
impl<T: Into<Key> + Clone> PartialEq<(Bound<T>, Bound<T>)> for BoundRange {
fn eq(&self, other: &(Bound<T>, Bound<T>)) -> bool {
self.from == convert_to_bound_key(other.0.clone())
&& self.to == convert_to_bound_key(other.1.clone())
}
}
impl<T: Into<Key>> From<Range<T>> for BoundRange {
fn from(other: Range<T>) -> BoundRange {
BoundRange::new(
Bound::Included(other.start.into()),
Bound::Excluded(other.end.into()),
)
}
}
impl<T: Into<Key>> From<RangeFrom<T>> for BoundRange {
fn from(other: RangeFrom<T>) -> BoundRange {
BoundRange::new(Bound::Included(other.start.into()), Bound::Unbounded)
}
}
impl<T: Into<Key>> From<RangeTo<T>> for BoundRange {
fn from(other: RangeTo<T>) -> BoundRange {
BoundRange::new(Bound::Unbounded, Bound::Excluded(other.end.into()))
}
}
impl<T: Into<Key>> From<RangeInclusive<T>> for BoundRange {
fn from(other: RangeInclusive<T>) -> BoundRange {
let (start, end) = other.into_inner();
BoundRange::new(Bound::Included(start.into()), Bound::Included(end.into()))
}
}
impl<T: Into<Key>> From<RangeToInclusive<T>> for BoundRange {
fn from(other: RangeToInclusive<T>) -> BoundRange {
BoundRange::new(Bound::Unbounded, Bound::Included(other.end.into()))
}
}
impl From<RangeFull> for BoundRange {
fn from(_other: RangeFull) -> BoundRange {
BoundRange::new(Bound::Unbounded, Bound::Unbounded)
}
}
impl<T: Into<Key>> From<(T, Option<T>)> for BoundRange {
fn from(other: (T, Option<T>)) -> BoundRange {
let to = match other.1 {
None => Bound::Unbounded,
Some(to) => to.into().into_upper_bound(),
};
BoundRange::new(other.0.into().into_lower_bound(), to)
}
}
impl<T: Into<Key>> From<(T, T)> for BoundRange {
fn from(other: (T, T)) -> BoundRange {
BoundRange::new(
other.0.into().into_lower_bound(),
other.1.into().into_upper_bound(),
)
}
}
impl<T: Into<Key> + Eq> From<(Bound<T>, Bound<T>)> for BoundRange {
fn from(bounds: (Bound<T>, Bound<T>)) -> BoundRange {
BoundRange::new(
convert_to_bound_key(bounds.0),
convert_to_bound_key(bounds.1),
)
}
}
impl From<BoundRange> for kvrpcpb::KeyRange {
fn from(bound_range: BoundRange) -> Self {
let (start, end) = bound_range.into_keys();
let mut range = kvrpcpb::KeyRange::default();
range.start_key = start.into();
range.end_key = end.unwrap_or_default().into();
range
}
}
impl From<kvrpcpb::KeyRange> for BoundRange {
fn from(range: kvrpcpb::KeyRange) -> Self {
let start_key = Key::from(range.start_key);
let end_key = Key::from(range.end_key);
BoundRange::new(start_key.into_lower_bound(), end_key.into_upper_bound())
}
}
/// A convenience trait for converting ranges of borrowed types into a `BoundRange`.
///
/// # Examples
/// ```rust
/// # use tikv_client::{IntoOwnedRange, BoundRange};
/// # use std::ops::*;
/// let r1: Range<&str> = "s".."e";
/// let r1: BoundRange = r1.into_owned();
///
/// let r2: RangeFrom<&str> = "start"..;
/// let r2: BoundRange = r2.into_owned();
///
/// let r3: RangeInclusive<&str> = "s"..="e";
/// let r3: BoundRange = r3.into_owned();
///
/// let r4: RangeTo<&str> = .."z";
/// let r4: BoundRange = r4.into_owned();
///
/// let k1: Vec<u8> = "start".to_owned().into_bytes();
/// let k2: Vec<u8> = "end".to_owned().into_bytes();
/// let r4: BoundRange = (&k1, &k2).into_owned();
/// let r5: BoundRange = (&k1, None).into_owned();
/// let r6: BoundRange = (&k1, Some(&k2)).into_owned();
/// ```
pub trait IntoOwnedRange {
/// Transform a borrowed range of some form into an owned `BoundRange`.
fn into_owned(self) -> BoundRange;
}
impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for Range<&U> {
fn into_owned(self) -> BoundRange {
From::from(Range {
start: self.start.to_owned(),
end: self.end.to_owned(),
})
}
}
impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for RangeFrom<&U> {
fn into_owned(self) -> BoundRange {
From::from(RangeFrom {
start: self.start.to_owned(),
})
}
}
impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for RangeTo<&U> {
fn into_owned(self) -> BoundRange {
From::from(RangeTo {
end: self.end.to_owned(),
})
}
}
impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange
for RangeInclusive<&U>
{
fn into_owned(self) -> BoundRange {
let (from, to) = self.into_inner();
From::from(RangeInclusive::new(from.to_owned(), to.to_owned()))
}
}
impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange
for RangeToInclusive<&U>
{
fn into_owned(self) -> BoundRange {
From::from(RangeToInclusive {
end: self.end.to_owned(),
})
}
}
impl IntoOwnedRange for RangeFull {
fn into_owned(self) -> BoundRange {
From::from(self)
}
}
impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for (&U, Option<&U>) {
fn into_owned(self) -> BoundRange {
From::from((self.0.to_owned(), self.1.map(|u| u.to_owned())))
}
}
impl<T: Into<Key> + Borrow<U>, U: ToOwned<Owned = T> + ?Sized> IntoOwnedRange for (&U, &U) {
fn into_owned(self) -> BoundRange {
From::from((self.0.to_owned(), self.1.to_owned()))
}
}
fn convert_to_bound_key<K: Into<Key>>(b: Bound<K>) -> Bound<Key> {
match b {
Bound::Included(k) => Bound::Included(k.into()),
Bound::Excluded(k) => Bound::Excluded(k.into()),
Bound::Unbounded => Bound::Unbounded,
}
}