1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
// Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.
use std::fmt;
use std::ops::Bound;
use std::u8;
#[allow(unused_imports)]
#[cfg(test)]
use proptest::arbitrary::any_with;
#[allow(unused_imports)]
#[cfg(test)]
use proptest::collection::size_range;
#[cfg(test)]
use proptest_derive::Arbitrary;
use super::HexRepr;
use crate::kv::codec::BytesEncoder;
use crate::kv::codec::{self};
use crate::proto::kvrpcpb;
const _PROPTEST_KEY_MAX: usize = 1024 * 2; // 2 KB
/// The key part of a key/value pair.
///
/// In TiKV, keys are an ordered sequence of bytes. This has an advantage over choosing `String` as
/// valid `UTF-8` is not required. This means that the user is permitted to store any data they wish,
/// as long as it can be represented by bytes. (Which is to say, pretty much anything!)
///
/// This type wraps around an owned value, so it should be treated it like `String` or `Vec<u8>`.
///
/// # Examples
/// ```rust
/// use tikv_client::Key;
///
/// let static_str: &'static str = "TiKV";
/// let from_static_str = Key::from(static_str.to_owned());
///
/// let string: String = String::from(static_str);
/// let from_string = Key::from(string);
/// assert_eq!(from_static_str, from_string);
///
/// let vec: Vec<u8> = static_str.as_bytes().to_vec();
/// let from_vec = Key::from(vec);
/// assert_eq!(from_static_str, from_vec);
///
/// let bytes = static_str.as_bytes().to_vec();
/// let from_bytes = Key::from(bytes);
/// assert_eq!(from_static_str, from_bytes);
/// ```
///
/// While `.into()` is usually sufficient for obtaining the buffer itself, sometimes type inference
/// isn't able to determine the correct type. Notably in the `assert_eq!()` and `==` cases. In
/// these cases using the fully-qualified-syntax is useful:
///
/// # Examples
/// ```rust
/// use tikv_client::Key;
///
/// let buf = "TiKV".as_bytes().to_owned();
/// let key = Key::from(buf.clone());
/// assert_eq!(Into::<Vec<u8>>::into(key), buf);
/// ```
///
/// Many functions which accept a `Key` accept an `Into<Key>`, which means all of the above types
/// can be passed directly to those functions.
#[derive(Default, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[cfg_attr(test, derive(Arbitrary))]
#[repr(transparent)]
pub struct Key(
#[cfg_attr(
test,
proptest(strategy = "any_with::<Vec<u8>>((size_range(_PROPTEST_KEY_MAX), ()))")
)]
pub(super) Vec<u8>,
);
impl AsRef<Key> for kvrpcpb::Mutation {
fn as_ref(&self) -> &Key {
self.key.as_ref()
}
}
impl Key {
/// The empty key.
pub const EMPTY: Self = Key(Vec::new());
/// Return whether the key is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Return whether the last byte of key is 0.
#[inline]
pub(super) fn zero_terminated(&self) -> bool {
self.0.last().map(|i| *i == 0).unwrap_or(false)
}
/// Push a zero to the end of the key.
///
/// Extending a zero makes the new key the smallest key that is greater than than the original one, i.e. the succeeder.
#[inline]
pub(super) fn push_zero(&mut self) {
self.0.push(0)
}
/// Convert the key to a lower bound. The key is treated as inclusive.
#[inline]
pub(super) fn into_lower_bound(mut self) -> Bound<Key> {
if self.zero_terminated() {
self.0.pop().unwrap();
Bound::Excluded(self)
} else {
Bound::Included(self)
}
}
/// Convert the key to an upper bound. The key is treated as exclusive.
#[inline]
pub(super) fn into_upper_bound(mut self) -> Bound<Key> {
if self.zero_terminated() {
self.0.pop().unwrap();
Bound::Included(self)
} else {
Bound::Excluded(self)
}
}
/// Return the MVCC-encoded representation of the key.
#[inline]
#[must_use]
pub fn to_encoded(&self) -> Key {
let len = codec::max_encoded_bytes_size(self.0.len());
let mut encoded = Vec::with_capacity(len);
encoded.encode_bytes(&self.0, false).unwrap();
Key(encoded)
}
pub fn len(&self) -> usize {
self.0.len()
}
}
impl From<Vec<u8>> for Key {
fn from(v: Vec<u8>) -> Self {
Key(v)
}
}
impl From<String> for Key {
fn from(v: String) -> Key {
Key(v.into_bytes())
}
}
impl From<Key> for Vec<u8> {
fn from(key: Key) -> Self {
key.0
}
}
impl<'a> From<&'a Key> for &'a [u8] {
fn from(key: &'a Key) -> Self {
&key.0
}
}
impl<'a> From<&'a Vec<u8>> for &'a Key {
fn from(key: &'a Vec<u8>) -> Self {
unsafe { &*(key as *const Vec<u8> as *const Key) }
}
}
impl AsRef<Key> for Key {
fn as_ref(&self) -> &Key {
self
}
}
impl AsRef<Key> for Vec<u8> {
fn as_ref(&self) -> &Key {
unsafe { &*(self as *const Vec<u8> as *const Key) }
}
}
impl fmt::Debug for Key {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Key({})", HexRepr(&self.0))
}
}